Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Neurol Sci ; 45(7): 3245-3253, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38285327

RESUMO

BACKGROUND AND OBJECTIVES: ASPECTs is a widely used marker to identify early stroke signs on non-enhanced computed tomography (NECT), yet it presents interindividual variability and it may be hard to use for non-experts. We introduce an algorithm capable of automatically estimating the NECT volumetric extension of early acute ischemic changes in the 3D space. We compared the power of this marker with ASPECTs evaluated by experienced practitioner in predicting the clinical outcome. METHODS: We analyzed and processed neuroimaging data of 153 patients admitted with acute ischemic stroke. All patients underwent a NECT at admission and on follow-up. The developed algorithm identifies the early ischemic hypodense region based on an automatic comparison of the gray level in the images of the two hemispheres, assumed to be an approximate mirror image of each other in healthy patients. RESULTS: In the two standard axial slices used to estimate the ASPECTs, the regions identified by the algorithm overlap significantly with those identified by experienced practitioners. However, in many patients, the regions identified automatically extend significantly to other slices. In these cases, the volume marker provides supplementary and independent information. Indeed, the clinical outcome of patients with volume marker = 0 can be distinguished with higher statistical confidence than the outcome of patients with ASPECTs = 10. CONCLUSION: The volumetric extension and the location of acute ischemic region in the 3D-space, automatically identified by our algorithm, provide data that are mostly in agreement with the ASPECTs value estimated by expert practitioners, and in some cases complementary and independent.


Assuntos
Algoritmos , AVC Isquêmico , Tomografia Computadorizada por Raios X , Humanos , Masculino , Tomografia Computadorizada por Raios X/normas , Tomografia Computadorizada por Raios X/métodos , Feminino , Idoso , AVC Isquêmico/diagnóstico por imagem , Pessoa de Meia-Idade , Isquemia Encefálica/diagnóstico por imagem , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Acidente Vascular Cerebral/diagnóstico por imagem
2.
Neuroimage ; 217: 116854, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32334091

RESUMO

With practice, humans improve their performance in a task by either optimizing a known strategy or discovering a novel, potentially more fruitful strategy. We investigated the neural processes underlying these two fundamental abilities by applying fMRI in a task with two possible alternative strategies. For analysis we combined time-resolved network analysis with Coherence Density Peak Clustering (Allegra et al., 2017), univariate GLM, and multivariate pattern classification. Converging evidence showed that the posterior portion of the default network, i.e. the precuneus and the angular gyrus bilaterally, has a central role in the optimization of the current strategy. These regions encoded the relevant spatial information, increased the strength of local connectivity as well as the long-distance connectivity with other relevant regions in the brain (e.g., visual cortex, dorsal attention network). The connectivity increase was proportional to performance optimization. By contrast, the anterior portion of the default network (i.e. medial prefrontal cortex) and the rostral portion of the fronto-parietal network were associated with new strategy discovery: an early increase of local and long-range connectivity centered on these regions was only observed in the subjects who would later shift to a new strategy. Overall, our findings shed light on the dynamic interactions between regions related to attention and with cognitive control, underlying the balance between strategy exploration and exploitation. Results suggest that the default network, far from being "shut-down" during task performance, has a pivotal role in the background exploration and monitoring of potential alternative courses of action.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adulto , Algoritmos , Atenção/fisiologia , Mapeamento Encefálico , Cognição/fisiologia , Tomada de Decisões/fisiologia , Comportamento Exploratório/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Neuroimagem/métodos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto Jovem
3.
Hum Brain Mapp ; 38(3): 1421-1437, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27879036

RESUMO

There is growing interest in the description of short-lived patterns in the spatiotemporal cortical activity monitored via neuroimaging. Most traditional analysis methods, designed to estimate relatively long-term brain dynamics, are not always appropriate to capture these patterns. Here we introduce a novel data-driven approach for detecting short-lived fMRI brain activity patterns. Exploiting Density Peak Clustering (Rodriguez and Laio [2014]), our approach reveals well localized clusters by identifying and grouping together voxels whose time-series are similar, irrespective of their brain location, even when very short time windows (∼10 volumes) are used. The method, which we call Coherence Density Peak Clustering (CDPC), is first tested on simulated data and compared with a standard unsupervised approach for fMRI analysis, independent component analysis (ICA). CDPC identifies activated voxels with essentially no false-positives and proves more reliable than ICA, which is troubled by a number of false positives comparable to that of true positives. The reliability of the method is demonstrated on real fMRI data from a simple motor task, containing brief iterations of the same movement. The clusters identified are found in regions expected to be involved in the task, and repeat synchronously with the paradigm. The methodology proposed is especially suitable for the study of short-time brain dynamics and single trial experiments, where the event or task of interest cannot be repeated for the same subject, as happens, for instance, in problem-solving, learning and decision-making. A GUI implementation of our method is available for download at https://github.com/micheleallegra/CDPC. Hum Brain Mapp 38:1421-1437, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Movimento/fisiologia , Oxigênio/sangue , Análise de Componente Principal , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
4.
J Neurosci ; 31(21): 7763-74, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21613489

RESUMO

Despite the recent interest in the neuroanatomy of inductive reasoning processes, the regional specificity within prefrontal cortex (PFC) for the different mechanisms involved in induction tasks remains to be determined. In this study, we used fMRI to investigate the contribution of PFC regions to rule acquisition (rule search and rule discovery) and rule following. Twenty-six healthy young adult participants were presented with a series of images of cards, each consisting of a set of circles numbered in sequence with one colored blue. Participants had to predict the position of the blue circle on the next card. The rules that had to be acquired pertained to the relationship among succeeding stimuli. Responses given by subjects were categorized in a series of phases either tapping rule acquisition (responses given up to and including rule discovery) or rule following (correct responses after rule acquisition). Mid-dorsolateral PFC (mid-DLPFC) was active during rule search and remained active until successful rule acquisition. By contrast, rule following was associated with activation in temporal, motor, and medial/anterior prefrontal cortex. Moreover, frontopolar cortex (FPC) was active throughout the rule acquisition and rule following phases before a rule became familiar. We attributed activation in mid-DLPFC to hypothesis generation and in FPC to integration of multiple separate inferences. The present study provides evidence that brain activation during inductive reasoning involves a complex network of frontal processes and that different subregions respond during rule acquisition and rule following phases.


Assuntos
Encéfalo/fisiologia , Estimulação Luminosa/métodos , Resolução de Problemas/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Adulto Jovem
5.
Cognition ; 103(3): 358-85, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16709406

RESUMO

The emergence of modern humans with their extraordinary cognitive capacities is ascribed to a novel type of cognitive computational process (sustained non-routine multi-level operations) required for abstract projectuality, held to be the common denominator of the cognitive capacities specific to modern humans. A brain operation (latching) that allows this novel computational process is proposed as well as a physics-inspired mechanism that could explain its rather recent emergence without invoking unlikely genetic or structural changes.


Assuntos
Evolução Biológica , Cognição/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Antropometria , Hominidae , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...