Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4218, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918611

RESUMO

Tasmania is experiencing increasing seawater temperatures during the summer period which often leads to thermal stress-induced starvation events in farmed Atlantic salmon, with consequent flesh pigment depletion. Our previous transcriptomic studies found a link between flesh pigmentation and the expression of genes regulating lipid metabolism accompanied by feeding behavior in the hindgut. However, the impact of prolonged exposure to elevated water temperature on muscle structural integrity and molecular mechanisms in muscle underlying pigment variation has not been elucidated to date. In this study, we investigated the effect of prolonged exposure to elevated water temperature on the farmed salmon flesh pigmentation and structural integrity, using muscle histological and transcriptomic analysis. On April 2019, after the end of the summer, two muscle regions of the fish fillet, front dorsal and back central (usually the most and least affected by depletion, respectively), were sampled from fifteen fish (weighing approximately 2 kg and belonging to the same commercial population split in two cages). The fish represented three flesh color intensity groups (n = 5 fish per group) categorized according to general level of pigmentation and presence of banding (i.e. difference in color between the two regions of interest) as follows: high red color-no banding (HN), high red color-banded (HB) and Pale fish. Histological analysis showed a distinction between the flesh color intensity phenotypes in both muscle regions. Muscle fibers in the HB fish were partly degraded, while they were atrophied and smaller in size in Pale fish compared to HN fish. In the Pale fish, interstitial spaces between muscle fibers were also enlarged. Transcriptomic analysis showed that in the front dorsal region of the HN fish, genes encoding collagens, calcium ion binding and metabolic processes were upregulated while genes related to lipid and fatty acid metabolism were downregulated when compared to HB fish. When comparing the back central region of the three phenotypes, actin alpha skeletal muscle and myosin genes were upregulated in the HN and HB fish, while tropomyosin genes were upregulated in the Pale fish. Also, genes encoding heat shock proteins were upregulated in the HN fish, while genes involving lipid metabolism and proteolysis were upregulated in the Pale fish. Starvation, likely caused by thermal stress during prolonged periods of elevated summer water temperatures, negatively affects energy metabolism to different extents, leading to localized or almost complete flesh color depletion in farmed Atlantic salmon. Based on our results, we conclude that thermal stress is responsible not only for flesh discoloration but also for loss of muscle integrity, which likely plays a key role in pigment depletion.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Temperatura , Transcriptoma , Pigmentação/genética , Músculo Esquelético , Atrofia Muscular , Água do Mar , Água
2.
Food Chem ; 417: 135867, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934706

RESUMO

Tasmanian-farmed Atlantic salmon populations exhibit starvation followed by a reduced growth rate alongside reduced flesh pigmentation in response to elevated summer temperatures, which at times can exceed their optimum threshold. Here we investigated fatty acids and carotenoids of Atlantic salmon displaying three different flesh color phenotypes, using metabolomic and chemical analyses of lipids and pigments in six key tissues. Astaxanthin is mainly responsible for flesh pigmentation, while canthaxanthin is associated with carotenoid catabolism in the liver, as our findings indicate. Reduced flesh pigmentation correlated with lower levels of carotenoids across all tested tissues and clear evidence of a correlation between carotenoid and fatty acid levels in all detected fatty acid classes was observed. The reduced growth performance and flesh pigmentation are most likely due to the impact of varying levels of starvation on fatty acids and carotenoid profiles supporting the link between carotenoids and fatty acid metabolic processes.


Assuntos
Salmão , Cor , Temperatura , Carotenoides/análise , Carotenoides/química , Carotenoides/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Salmão/metabolismo , Animais , Feminino , Metabolômica
4.
BMC Genomics ; 22(1): 545, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34271869

RESUMO

BACKGROUND: The flesh pigmentation of farmed Atlantic salmon is formed by accumulation of carotenoids derived from commercial diets. In the salmon gastrointestinal system, the hindgut is considered critical in the processes of carotenoids uptake and metabolism. In Tasmania, flesh color depletion can noticeably affect farmed Atlantic salmon at different levels of severity following extremely hot summers. In this study, RNA sequencing (RNA-Seq) was performed to investigate the reduction in flesh pigmentation. Library preparation is a key step that significantly impacts the effectiveness of RNA sequencing (RNA-Seq) experiments. Besides the commonly used whole transcript RNA-Seq method, the 3' mRNA-Seq method is being applied widely, owing to its reduced cost, enabling more repeats to be sequenced at the expense of lower resolution. Therefore, the output of the Illumina TruSeq kit (whole transcript RNA-Seq) and the Lexogen QuantSeq kit (3' mRNA-Seq) was analyzed to identify genes in the Atlantic salmon hindgut that are differentially expressed (DEGs) between two flesh color phenotypes. RESULTS: In both methods, DEGs between the two color phenotypes were associated with metal ion transport, oxidation-reduction processes, and immune responses. We also found DEGs related to lipid metabolism in the QuantSeq method. In the TruSeq method, a missense mutation was detected in DEGs in different flesh color traits. The number of DEGs found in the TruSeq libraries was much higher than the QuantSeq; however, the trend of DEGs in both library methods was similar and validated by qPCR. CONCLUSIONS: Flesh coloration in Atlantic salmon is related to lipid metabolism in which apolipoproteins, serum albumin and fatty acid-binding protein genes are hypothesized to be linked to the absorption, transport and deposition of carotenoids. Our findings suggest that Grp could inhibit the feeding behavior of low color-banded fish, resulting in the dietary carotenoid shortage. Several SNPs in genes involving in carotenoid-binding cholesterol and oxidative stress were detected in both flesh color phenotypes. Regarding the choice of the library preparation method, the selection criteria depend on the research design and purpose. The 3' mRNA-Seq method is ideal for targeted identification of highly expressed genes, while the whole RNA-Seq method is recommended for identification of unknown genes, enabling the identification of splice variants and trait-associated SNPs, as we have found for duox2 and duoxa1.


Assuntos
Salmo salar , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Metabolismo dos Lipídeos , Salmo salar/genética , Análise de Sequência de RNA , Tasmânia
5.
Microorganisms ; 8(8)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824332

RESUMO

The Atlantic salmon (Salmo salar L., 1758) is a temperate fish species native to the northern Atlantic Ocean. The distinctive pink-red flesh color (i.e., pigmentation) significantly affects the market price. Flesh paleness leads to customer dissatisfaction, a loss of competitiveness, a drop in product value and, consequently, severe economic losses. This work extends our knowledge on salmonid carotenoid dynamics to include the interaction between the gut microbiota and flesh color. A significant association between the flesh color and abundance of specific bacterial communities in the gut microbiota suggests that color may be affected either by seeding resilient beneficial bacteria or by inhibiting the negative effect of pathogenic bacteria. We sampled 96 fish, which covered all phenotypes of flesh color, including the average color and the evenness of color of different areas of the fillet, at both the distal intestine and the pyloric caeca of each individual, followed by 16S rRNA sequencing at the V3-V4 region. The microbiota profiles of these two gut regions were significantly different; however, there was a consistency in the microbiota, which correlated with the flesh color. Moreover, the pyloric caeca microbiota also showed high correlation with the evenness of the flesh color (beta diversity index, PERMANOVA, p = 0.002). The results from the pyloric caeca indicate that Carnobacterium, a group belonging to the lactic acid bacteria, is strongly related to the flesh color and the evenness of the color between the flesh areas.

6.
Mar Biotechnol (NY) ; 22(6): 786-804, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31942646

RESUMO

In Tasmania (Australia), during the marine phase, it has been observed that flesh pigmentation significantly drops in summer, possibly due to high water temperatures (> 20 °C). Although this deleterious effect of summer temperatures has been ascertained, there is a lack of knowledge of the actual mechanisms behind the impaired uptake and/or loss of pigments in Atlantic salmon in a challenging environment. Since the microbial community in the fish intestine significantly changes in relation to the variations of water temperature, this study was conducted to assess how the gut microbiota profile also correlates with the flesh color during temperature fluctuation. We sampled 68 fish at three time points covering the end of summer to winter at a marine farm in Tasmania, Australia. Flesh color was examined in two ways: the average color throughout and the evenness of the color between different areas of the fillet. Using 16S rRNA sequencing of the v3-v4 region, we determined that water temperature corresponded to changes in the gut microbiome both with alpha diversity (Kruskal-Wallis tests P = 0.05) and beta diversity indices (PERMANOVA P = 0.001). Also, there was a significant correlation between the microbiota and the color of the fillet (PERMANOVA P = 0.016). There was a high abundance of Pseudoalteromonadaceae, Enterobacteriaceae, Microbacteriaceae, and Vibrionaceae in the pale individuals. Conversely, carotenoid-synthesizing bacteria families (Bacillaceae, Mycoplasmataceae, Pseudomonas, Phyllobacteriaceae, and Comamonadaceae) were found in higher abundance in individuals with darker flesh color.


Assuntos
Microbioma Gastrointestinal , Pigmentação , Salmo salar/microbiologia , Animais , Bactérias/classificação , Pesqueiros , Qualidade dos Alimentos , Temperatura Alta , RNA Ribossômico 16S/genética , Salmo salar/fisiologia , Estações do Ano , Tasmânia
7.
Artigo em Inglês | MEDLINE | ID: mdl-28214702

RESUMO

There is currently renewed interest in farming triploid Atlantic salmon. Improving farming requires identifying triploid specific phenotypic and physiological traits that are uniquely derived from ploidy per se and developed under optimal growing conditions. This study investigated firstly, the impact of ploidy on growth performance and whole body composition of Atlantic salmon at different early freshwater stages [34dph (days post-hatching) alevin, 109dph fry, and 162dph parr] and secondly, whether phenotypic differences at these stages were reflected in protein samples collected from whole fish, white muscle or liver tissue. Female diploid and triploid Atlantic salmon (n=3) were first fed at 35dph and then maintained by feeding to satiation on commercial feeds. Triploids were significantly lower in weight at the late alevin and fry stages but matched diploid weight at the parr stage. The whole-body lipid content was significantly higher for triploids at the parr stage, while the whole-body lipid class profile was broadly similar and was largely not affected by ploidy. Comparative label-free shotgun proteomic analysis did not detect significant alterations in protein expression between diploids and triploids at any growth stage. The present results indicate that ploidy under optimal growing conditions and during early freshwater stages only result in small phenotypic differences in weight and whole body lipid content that were not reflected at the proteome level. These findings suggest that optimal husbandry conditions for freshwater Atlantic salmon are similar between ploidies, at least for all-female populations.


Assuntos
Diploide , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Água Doce/química , Proteoma/análise , Proteômica/métodos , Salmo salar/metabolismo , Animais , Feminino , Água Doce/análise , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Triploidia
8.
PLoS One ; 11(12): e0168454, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27977809

RESUMO

Lower jaw deformity (LJD) is a skeletal anomaly affecting farmed triploid Atlantic salmon (Salmo salar L.) which leads to considerable economic losses for industry and has animal welfare implications. The present study employed transcriptome analysis in parallel with real-time qPCR techniques to characterise for the first time the LJD condition in triploid Atlantic salmon juveniles using two independent sample sets: experimentally-sourced salmon (60 g) and commercially produced salmon (100 g). A total of eleven genes, some detected/identified through the transcriptome analysis (fbn2, gal and gphb5) and others previously determined to be related to skeletal physiology (alp, bmp4, col1a1, col2a1, fgf23, igf1, mmp13, ocn), were tested in the two independent sample sets. Gphb5, a recently discovered hormone, was significantly (P < 0.05) down-regulated in LJD affected fish in both sample sets, suggesting a possible hormonal involvement. In-situ hybridization detected gphb5 expression in oral epithelium, teeth and skin of the lower jaw. Col2a1 showed the same consistent significant (P < 0.05) down-regulation in LJD suggesting a possible cartilaginous impairment as a distinctive feature of the condition. Significant (P < 0.05) differential expression of other genes found in either one or the other sample set highlighted the possible effect of stage of development or condition progression on transcription and showed that anomalous bone development, likely driven by cartilage impairment, is more evident at larger fish sizes. The present study improved our understanding of LJD suggesting that a cartilage impairment likely underlies the condition and col2a1 may be a marker. In addition, the involvement of gphb5 urges further investigation of a hormonal role in LJD and skeletal physiology in general.


Assuntos
Anormalidades Maxilomandibulares/genética , Salmo salar/anormalidades , Salmo salar/genética , Animais , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Triploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...