Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 16(1): 109, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232757

RESUMO

BACKGROUND: The foodborne bacterium Listeria monocytogenes (Lm) causes a range of diseases, from mild gastroenteritis to invasive infections that have high fatality rate in vulnerable individuals. Understanding the population genomic structure of invasive Lm is critical to informing public health interventions and infection control policies that will be most effective especially in local and regional communities. METHODS: We sequenced the whole draft genomes of 936 Lm isolates from human clinical samples obtained in a two-decade active surveillance program across 58 counties in New York State, USA. Samples came mostly from blood and cerebrospinal fluid. We characterized the phylogenetic relationships, population structure, antimicrobial resistance genes, virulence genes, and mobile genetic elements. RESULTS: The population is genetically heterogenous, consisting of lineages I-IV, 89 clonal complexes, 200 sequence types, and six known serogroups. In addition to intrinsic antimicrobial resistance genes (fosX, lin, norB, and sul), other resistance genes tetM, tetS, ermG, msrD, and mefA were sparsely distributed in the population. Within each lineage, we identified clusters of isolates with ≤ 20 single nucleotide polymorphisms in the core genome alignment. These clusters may represent isolates that share a most recent common ancestor, e.g., they are derived from the same contamination source or demonstrate evidence of transmission or outbreak. We identified 38 epidemiologically linked clusters of isolates, confirming eight previously reported disease outbreaks and the discovery of cryptic outbreaks and undetected chains of transmission, even in the rarely reported Lm lineage III (ST3171). The presence of animal-associated lineages III and IV may suggest a possible spillover of animal-restricted strains to humans. Many transmissible clones persisted over several years and traversed distant sites across the state. CONCLUSIONS: Our findings revealed the bacterial determinants of invasive listeriosis, driven mainly by the diversity of locally circulating lineages, intrinsic and mobile antimicrobial resistance and virulence genes, and persistence across geographical and temporal scales. Our findings will inform public health efforts to reduce the burden of invasive listeriosis, including the design of food safety measures, source traceback, and outbreak detection.


Assuntos
Listeria monocytogenes , Listeriose , Filogenia , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/classificação , Humanos , Listeriose/microbiologia , Listeriose/epidemiologia , Listeriose/transmissão , Genoma Bacteriano , Polimorfismo de Nucleotídeo Único , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana/genética , Virulência/genética
2.
BMC Genomics ; 25(1): 843, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251950

RESUMO

BACKGROUND: Helicobacter pylori infects the stomach and/or small intestines in more than half of the human population. Infection with H. pylori is the most common cause of chronic gastritis, which can lead to more severe gastroduodenal pathologies such as peptic ulcer, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. H. pylori infection is particularly concerning in Colombia in South America, where > 80% of the population is estimated to be infected with H. pylori and the rate of stomach cancer is one of the highest in the continent. RESULTS: We compared the antimicrobial susceptibility profiles and short-read genome sequences of five H. pylori isolates obtained from patients diagnosed with gastritis of varying severity (chronic gastritis, antral erosive gastritis, superficial gastritis) in Pereira, Colombia sampled in 2015. Antimicrobial susceptibility tests revealed the isolates to be resistant to at least one of the five antimicrobials tested: four isolates were resistant to metronidazole, two to clarithromycin, two to levofloxacin, and one to rifampin. All isolates were susceptible to tetracycline and amoxicillin. Comparative genome analyses revealed the presence of genes associated with efflux pump, restriction modification systems, phages and insertion sequences, and virulence genes including the cytotoxin genes cagA and vacA. The five genomes represent three novel sequence types. In the context of the Colombian and global populations, the five H. pylori isolates from Pereira were phylogenetically distant to each other but were closely related to other lineages circulating in the country. CONCLUSIONS: H. pylori from gastritis of different severity varied in their antimicrobial susceptibility profiles and genome content. This knowledge will be useful in implementing appropriate eradication treatment regimens for specific types of gastritis. Understanding the genetic and phenotypic heterogeneity in H. pylori across the geographical landscape is critical in informing health policies for effective disease prevention and management that is most effective at local and country-wide scales. This is especially important in Colombia and other South American countries that are poorly represented in global genomic surveillance studies of bacterial pathogens.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Gastrite , Genoma Bacteriano , Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/patogenicidade , Helicobacter pylori/isolamento & purificação , Gastrite/microbiologia , Colômbia , Infecções por Helicobacter/microbiologia , Antibacterianos/farmacologia , Virulência/genética , Farmacorresistência Bacteriana/genética , Genômica , Testes de Sensibilidade Microbiana , Filogenia , Pessoa de Meia-Idade , Masculino , Feminino
3.
Nat Commun ; 15(1): 6969, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138200

RESUMO

Bloodstream infections caused by the opportunistic pathogen Klebsiella pneumoniae are associated with adverse health complications and high mortality rates. Antimicrobial resistance (AMR) limits available treatment options, thus exacerbating its public health and clinical burden. Here, we aim to elucidate the population structure of K. pneumoniae in bloodstream infections from a single medical center and the drivers that facilitate the dissemination of AMR. Analysis of 136 short-read genome sequences complemented with 12 long-read sequences shows the population consisting of 94 sequence types (STs) and 99 clonal groups, including globally distributed multidrug resistant and hypervirulent clones. In vitro antimicrobial susceptibility testing and in silico identification of AMR determinants reveal high concordance (90.44-100%) for aminoglycosides, beta-lactams, carbapenems, cephalosporins, quinolones, and sulfonamides. IncF plasmids mediate the clonal (within the same lineage) and horizontal (between lineages) transmission of the extended-spectrum beta-lactamase gene blaCTX-M-15. Nearly identical plasmids are recovered from isolates over a span of two years indicating long-term persistence. The genetic determinants for hypervirulence are carried on plasmids exhibiting genomic rearrangement, loss, and/or truncation. Our findings highlight the importance of considering both the genetic background of host strains and the routes of plasmid transmission in understanding the spread of AMR in bloodstream infections.


Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plasmídeos , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Plasmídeos/genética , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/transmissão , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Bacteriemia/microbiologia , Bacteriemia/transmissão , Virulência/genética , Carbapenêmicos/farmacologia
4.
Microb Genom ; 10(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028633

RESUMO

Consumption of raw, undercooked or contaminated animal food products is a frequent cause of Campylobacter jejuni infection. Brazil is the world's third largest producer and a major exporter of chicken meat, yet population-level genomic investigations of C. jejuni in the country remain scarce. Analysis of 221 C. jejuni genomes from Brazil shows that the overall core and accessory genomic features of C. jejuni are influenced by the identity of the human or animal source. Of the 60 sequence types detected, ST353 is the most prevalent and consists of samples from chicken and human sources. Notably, we identified the presence of diverse bla genes from the OXA-61 and OXA-184 families that confer beta-lactam resistance as well as the operon cmeABCR related to multidrug efflux pump, which contributes to resistance against tetracyclines, macrolides and quinolones. Based on limited data, we estimated the most recent common ancestor of ST353 to the late 1500s, coinciding with the time the Portuguese first arrived in Brazil and introduced domesticated chickens into the country. We identified at least two instances of ancestral chicken-to-human infections in ST353. The evolution of C. jejuni in Brazil was driven by the confluence of clinically relevant genetic elements, multi-host adaptation and clonal population growth that coincided with major socio-economic changes in poultry farming.


Assuntos
Campylobacter jejuni , Galinhas , Evolução Molecular , Genoma Bacteriano , Campylobacter jejuni/genética , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/isolamento & purificação , Campylobacter jejuni/classificação , Brasil , Animais , Galinhas/microbiologia , Humanos , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Adaptação ao Hospedeiro/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Filogenia
5.
NPJ Antimicrob Resist ; 2(1): 14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725655

RESUMO

Staphylococcus aureus in the bloodstream causes high morbidity and mortality, exacerbated by the spread of multidrug-resistant and methicillin-resistant S. aureus (MRSA). We aimed to characterize the circulating lineages of S. aureus from bloodstream infections and the contribution of individual lineages to resistance over time. Here, we generated 852 high-quality short-read draft genome sequences of S. aureus isolates from patient blood cultures in a single hospital from 2010 to 2022. A total of 80 previously recognized sequence types (ST) and five major clonal complexes are present in the population. Two frequently detected lineages, ST5 and ST8 exhibited fluctuating demographic structures throughout their histories. The rise and fall in their population growth coincided with the acquisition of antimicrobial resistance, mobile genetic elements, and superantigen genes, thus shaping the accessory genome structure across the entire population. These results reflect undetected selective events and changing ecology of multidrug-resistant S. aureus in the bloodstream.

6.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625724

RESUMO

Streptomyces are prolific producers of secondary metabolites from which many clinically useful compounds have been derived. They inhabit diverse habitats but have rarely been reported in vertebrates. Here, we aim to determine to what extent the ecological source (bat host species and cave sites) influence the genomic and biosynthetic diversity of Streptomyces bacteria. We analysed draft genomes of 132 Streptomyces isolates sampled from 11 species of insectivorous bats from six cave sites in Arizona and New Mexico, USA. We delineated 55 species based on the genome-wide average nucleotide identity and core genome phylogenetic tree. Streptomyces isolates that colonize the same bat species or inhabit the same site exhibit greater overall genomic similarity than they do with Streptomyces from other bat species or sites. However, when considering biosynthetic gene clusters (BGCs) alone, BGC distribution is not structured by the ecological or geographical source of the Streptomyces that carry them. Each genome carried between 19-65 BGCs (median=42.5) and varied even among members of the same Streptomyces species. Nine major classes of BGCs were detected in ten of the 11 bat species and in all sites: terpene, non-ribosomal peptide synthetase, polyketide synthase, siderophore, RiPP-like, butyrolactone, lanthipeptide, ectoine, melanin. Finally, Streptomyces genomes carry multiple hybrid BGCs consisting of signature domains from two to seven distinct BGC classes. Taken together, our results bring critical insights to understanding Streptomyces-bat ecology and BGC diversity that may contribute to bat health and in augmenting current efforts in natural product discovery, especially from underexplored or overlooked environments.


Assuntos
Quirópteros , Animais , Filogenia , Genômica , Arizona , Bactérias
7.
mSphere ; 9(4): e0075123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501935

RESUMO

Staphylococcus aureus is a ubiquitous commensal and opportunistic bacterial pathogen that can cause a wide gamut of infections, which are exacerbated by the presence of multidrug-resistant and methicillin-resistant S. aureus. S. aureus is genetically heterogeneous and consists of numerous distinct lineages. Using 558 complete genomes of S. aureus, we aim to determine how the accessory genome content among phylogenetic lineages of S. aureus is structured and has evolved. Bayesian hierarchical clustering identified 10 sequence clusters, of which seven contained major sequence types (ST 1, 5, 8, 30, 59, 239, and 398). The seven sequence clusters differed in their accessory gene content, including genes associated with antimicrobial resistance and virulence. Focusing on the two largest clusters, BAPS8 and BAPS10, and each consisting mostly of ST5 and ST8, respectively, we found that the structure and connected components in the co-occurrence networks of accessory genomes varied between them. These differences are explained, in part, by the variation in the rates at which the two sequence clusters gained and lost accessory genes, with the highest rate of gene accumulation occurring recently in their evolutionary histories. We also identified a divergent group within BAPS10 that has experienced high gene gain and loss early in its history. Together, our results show highly variable and dynamic accessory genomes in S. aureus that are structured by the history of the specific lineages that carry them.IMPORTANCEStaphylococcus aureus is an opportunistic, multi-host pathogen that can cause a variety of benign and life-threatening infections. Our results revealed considerable differences in the structure and evolution of the accessory genomes of major lineages within S. aureus. Such genomic variation within a species can have important implications on disease epidemiology, pathogenesis of infection, and interactions with the vertebrate host. Our findings provide important insights into the underlying genetic basis for the success of S. aureus as a highly adaptable and resistant pathogen, which will inform current efforts to control and treat staphylococcal diseases.

8.
STAR Protoc ; 4(4): 102733, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980566

RESUMO

Agent-based models are composed of individual agents coded for traits, such as cooperation and cheating, that interact in a virtual world based on defined rules. Here, we describe the use of an agent-based model of homologous recombination in bacteria playing a public goods game. We describe steps for software installation, setting model parameters, running and testing models, and visualization and statistical analysis. This protocol is useful in analyses of horizontal gene transfer, bacterial sociobiology, and game theory. For complete details on the use and execution of this protocol, please refer to Lee et al.1.


Assuntos
Bactérias , Teoria dos Jogos
9.
Microbiol Spectr ; : e0054923, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676032

RESUMO

Klebsiella oxytoca is an opportunistic pathogen causing serious nosocomial infections. Knowledge about the population structure and diversity of healthcare-associated K. oxytoca from a genomic standpoint remains limited. Here, we characterized the phylogenetic relationships and genomic characteristics of 20 K. oxytoca sensu stricto isolates recovered from bloodstream infections at the Dartmouth-Hitchcock Medical Center, New Hampshire, USA from 2017 to 2021. Results revealed a diverse population consisting of 15 sequence types (STs) that together harbored 10 variants of the intrinsic beta-lactamase gene bla OXY-2, conferring resistance to penicillins. Similar sets of antimicrobial resistance (AMR) determinants reside in multiple distinct lineages, with no one lineage dominating the local population. To place the New Hampshire K. oxytoca in a broader context, we compared them to 304 publicly available genomes of clinical isolates from 18 countries. This global clinical K. oxytoca sensu stricto population is represented by over 65 STs that together harbored resistance genes against 14 antimicrobial classes, including eight bla OXY-2 variants. Three dominant STs in the global population (ST2, ST176, ST199) circulate across multiple countries and were also present in the New Hampshire population. The global K. oxytoca population is genetically diverse, but there is evidence for broad dissemination of a few lineages carrying distinct set of AMR determinants. Our findings reveal the clinical diversity of K. oxytoca sensu stricto and its importance in surveillance efforts aimed at monitoring the evolution of this drug-resistant nosocomial pathogen. IMPORTANCE The opportunistic pathogen Klebsiella oxytoca has been increasingly implicated in patient morbidity and mortality worldwide, including several outbreaks in healthcare settings. The emergence and spread of antimicrobial resistant strains exacerbate the disease burden caused by this species. Our study showed that clinical K. oxytoca sensu stricto is phylogenetically diverse, harboring various antimicrobial resistance determinants and bla OXY-2 variants. Understanding the genomic and population structure of K. oxytoca is important for international initiatives and local epidemiological efforts for surveillance and control of drug-resistant K. oxytoca.

10.
BMC Microbiol ; 23(1): 235, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626313

RESUMO

BACKGROUND: Staphylococcus aureus can infect and adapt to multiple host species. However, our understanding of the genetic and evolutionary drivers of its generalist lifestyle remains inadequate. This is particularly important when considering local populations of S. aureus, where close physical proximity between bacterial lineages and between host species may facilitate frequent and repeated interactions between them. Here, we aim to elucidate the genomic differences between human- and animal-derived S. aureus from 437 isolates sampled from disease cases in the northeast region of the United States. RESULTS: Multi-locus sequence typing revealed the existence of 75 previously recognized sequence types (ST). Our population genomic analyses revealed heterogeneity in the accessory genome content of three dominant S. aureus lineages (ST5, ST8, ST30). Genes related to antimicrobial resistance, virulence, and plasmid types were differentially distributed among isolates according to host (human versus non-human) and among the three major STs. Across the entire population, we identified a total of 1,912 recombination events that occurred in 765 genes. The frequency and impact of homologous recombination were comparable between human- and animal-derived isolates. Low-frequency STs were major donors of recombined DNA, regardless of the identity of their host. The most frequently recombined genes (clfB, aroA, sraP) function in host infection and virulence, which were also frequently shared between the rare lineages. CONCLUSIONS: Taken together, these results show that frequent but variable patterns of recombination among co-circulating S. aureus lineages, including the low-frequency lineages, that traverse host barriers shape the structure of local gene pool and the reservoir of host-associated genetic variants. Our study provides important insights to the genetic and evolutionary factors that contribute to the ability of S. aureus to colonize and cause disease in multiple host species. Our study highlights the importance of continuous surveillance of S. aureus circulating in different ecological host niches and the need to systematically sample from them. These findings will inform development of effective measures to control S. aureus colonization, infection, and transmission across the One Health continuum.


Assuntos
Pool Gênico , Infecções Estafilocócicas , Animais , Tipagem de Sequências Multilocus , Staphylococcus aureus/genética , Evolução Biológica
11.
iScience ; 26(8): 107344, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554437

RESUMO

Prosocial behavior is ubiquitous in nature despite the relative fitness costs carried by cooperative individuals. However, the stability of cooperation in populations is fragile and often maintained through enforcement. We propose that homologous recombination provides such a mechanism in bacteria. Using an agent-based model of recombination in bacteria playing a public goods game, we demonstrate how changes in recombination rates affect the proportion of cooperating cells. In our model, recombination converts cells to a different strategy, either freeloading (cheaters) or cooperation, based on the strategies of neighboring cells and recombination rate. Increasing the recombination rate expands the parameter space in which cooperators outcompete freeloaders. However, increasing the recombination rate alone is neither sufficient nor necessary. Intermediate benefits of cooperation, lower population viscosity, and greater population size can promote the evolution of cooperation from within populations of cheaters. Our findings demonstrate how recombination influences the persistence of cooperative behavior in bacteria.

12.
Commun Biol ; 6(1): 482, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137974

RESUMO

Coagulase-negative Staphylococcus (CoNS) are opportunistic pathogens implicated in many human and animal infections. The evolutionary history of CoNS remains obscure because of the historical lack of recognition for their clinical importance and poor taxonomic sampling. Here, we sequenced the genomes of 191 CoNS isolates representing 15 species sampled from diseased animals diagnosed in a veterinary diagnostic laboratory. We found that CoNS are important reservoirs of diverse phages, plasmids and mobilizable genes encoding antimicrobial resistance, heavy metal resistance, and virulence. Frequent exchange of DNA between certain donor-recipient partners suggests that specific lineages act as hubs of gene sharing. We also detected frequent recombination between CoNS regardless of their animal host species, indicating that ecological barriers to horizontal gene transfer can be surmounted in co-circulating lineages. Our findings reveal frequent but structured patterns of transfer that exist within and between CoNS species, which are driven by their overlapping ecology and geographical proximity.


Assuntos
Bacteriófagos , Coagulase , Animais , Humanos , Coagulase/genética , Staphylococcus/genética , Plasmídeos
13.
Cell Genom ; 2(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36465278

RESUMO

Staphylococcus aureus is a multi-host pathogen that causes infections in animals and humans globally. The specific genetic loci-and the extent to which they drive cross-species switching, transmissibility, and adaptation-are not well understood. Here, we conducted a population genomic study of 437 S. aureus isolates to identify bacterial genetic variation that determines infection of human and animal hosts through a genome-wide association study (GWAS) using linear mixed models. We found genetic variants tagging φSa3 prophage-encoded immune evasion genes associated with human hosts, which contributed ~99.9% of the overall heritability (~88%), highlighting their key role in S. aureus human infection. Furthermore, GWAS of pairs of phylogenetically matched human and animal isolates confirmed and uncovered additional loci not implicated in GWAS of unmatched isolates. Our findings reveal the loci that are critical for S. aureus host transmissibility, infection, switching, and adaptation and how their spread alters the specificity of host-adapted clones.

14.
Front Microbiol ; 13: 983083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338064

RESUMO

Microbes frequently encounter heavy metals and other toxic compounds generated from natural biogeochemical processes and anthropogenic activities. Here, we analyzed the prevalence and association of genes conferring resistance to heavy metals, biocides, and antimicrobial compounds in 394 genome sequences of clinical human-derived S. enterica from New Hampshire, USA. The most prevalent was the gold operon (gesABC-golTSB), which was present in 99.2% of the genomes. In contrast, the other five heavy metal operons (arsenic, copper, mercury, silver, tellurite) were present in 0.76% (3/394)-5.58% (22/394) of the total population. The heavy metal operons and three biocide resistance genes were differentially distributed across 15 sequence types (STs) and 16 serotypes. The number of heavy metal operons and biocide resistance genes per genome was significantly associated with high number of antimicrobial resistance (AMR) genes per genome. Notable is the mercury operon which exhibited significant association with genes conferring resistance to aminoglycosides, cephalosporins, diaminopyrimidine, sulfonamide, and fosfomycin. The mercury operon was co-located with the AMR genes aac(3)-IV, ant(3")-IIa, aph(3')-Ia, and aph(4)-Ia, CTX-M-65, dfrA14, sul1, and fosA3 genes within the same plasmid types. Lastly, we found evidence for negative selection of individual genes of each heavy metal operon and the biocide resistance genes (dN/dS < 1). Our study highlights the need for continued surveillance of S. enterica serotypes that carry those genes that confer resistance to heavy metals and biocides that are often associated with mobile AMR genes. The selective pressures imposed by heavy metals and biocides on S. enterica may contribute to the co-selection and spread of AMR in human infections.

15.
Microbiol Resour Announc ; 11(10): e0071422, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125295

RESUMO

Mammaliicoccus sciuri (previously Staphylococcus sciuri) is a frequent colonizer of mammals. We report the draft genomes of a methicillin-resistant strain (2254A) isolated from an armadillo and a methicillin-susceptible strain (6942A) from a cow. Genomes were sequenced using long-read Nanopore sequencing.

16.
BMC Genomics ; 23(1): 537, 2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35870884

RESUMO

BACKGROUND: The implementation of whole genome sequencing (WGS) by PulseNet, the molecular subtyping network for foodborne diseases, has transformed surveillance, outbreak detection, and public health laboratory practices in the United States. In 2017, the New Hampshire Public Health Laboratories, a member of PulseNet, commenced the use of WGS in tracking foodborne pathogens across the state. We present some of the initial results of New Hampshire's initiative to transition to WGS in tracking Salmonella enterica, a bacterial pathogen that is responsible for non-typhoidal foodborne infections and enteric fever. We characterize the population structure and evolutionary history of 394 genomes of isolates recovered from human clinical cases in New Hampshire from 2017 to 2020. RESULTS: The New Hampshire S. enterica population is phylogenetically diverse, consisting of 78 sequence types (ST) and 67 serotypes. Six lineages dominate the population: ST 11 serotype Enteritidis, ST 19 Typhimurium, ST 32 Infantis, ST 118 Newport, ST 22 Braenderup, and ST 26 Thompson. Each lineage is derived from long ancestral branches in the phylogeny, suggesting their extended presence in the region and recent clonal expansion. We detected 61 genes associated with resistance to 14 antimicrobial classes. Of these, unique genes of five antimicrobial classes (aminocoumarins, aminoglycosides, fluoroquinolones, nitroimidazoles, and peptides) were detected in all genomes. Rather than a single clone carrying multiple resistance genes expanding in the state, we found multiple lineages carrying different combinations of independently acquired resistance determinants. We estimate the time to the most recent common ancestor of the predominant lineage ST 11 serotype Enteritidis (126 genomes) to be 1965 (95% highest posterior density intervals: 1927-1982). Its population size expanded until 1978, followed by a population decline until 1990. This lineage has been expanding since then. Comparison with genomes from other states reveal lack of geographical clustering indicative of long-distance dissemination. CONCLUSIONS: WGS studies of standing pathogen diversity provide critical insights into the population and evolutionary dynamics of lineages and antimicrobial resistance, which can be translated to effective public health action and decision-making. We highlight the need to strengthen efforts to implement WGS-based surveillance and genomic data analyses in state public health laboratories.


Assuntos
Salmonella enterica , Febre Tifoide , Animais , Antibacterianos/farmacologia , Genoma Bacteriano , Humanos , Laboratórios , New Hampshire , Filogenia , Saúde Pública , Estados Unidos , Sequenciamento Completo do Genoma/métodos
17.
Sci Rep ; 12(1): 9499, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680904

RESUMO

Microbes in marine sediments constitute a large percentage of the global marine ecosystem and function to maintain a healthy food web. In continental shelf habitats such as the Gulf of Maine (GoM), relatively little is known of the microbial community abundance, biodiversity, and natural product potential. This report is the first to provide a time-series assessment (2017-2020) of the sediment microbial structure in areas open and closed to fishing within the Stellwagen Bank National Marine Sanctuary (SBNMS). A whole metagenome sequencing (WMS) approach was used to characterize the sediment microbial community. Taxonomic abundance was calculated across seven geographic sites with 14 individual sediment samples collected during the summer and fall seasons. Bioinformatics analyses identified more than 5900 different species across multiple years. Non-metric multidimensional scaling methods and generalized linear models demonstrated that species richness was inversely associated with fishing exposure levels and varied by year. Additionally, the discovery of 12 unique biosynthetic gene clusters (BGCs) collected across sites confirmed the potential for medically relevant natural product discovery in the SBNMS. This study provides a practical assessment of how fishing exposure and temporal trends may affect microbial community structure in a coastal marine sanctuary.


Assuntos
Produtos Biológicos , Microbiota , Biodiversidade , Ecossistema , Sedimentos Geológicos , Caça , Metagenômica , Microbiota/genética
18.
Microbiol Spectr ; 10(3): e0020122, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638778

RESUMO

Staphylococcus aureus causes a variety of debilitating and life-threatening diseases, and thus remains a challenging global health threat. S. aureus is remarkably diverse, yet only a minority of methicillin-resistant S. aureus (MRSA) clones have caused pandemic proportions of diseases. The genetic drivers of the successful dissemination of some clones across wide geographical expanses remain poorly understood. We analyzed 386 recently published MRSA genomes from bloodstream infections sampled in North, Central, and South America from 2011 to 2018. Here, we show that MRSA-associated bloodstream infections were attributable to two genetically distinct lineages. One lineage consisted almost exclusively of sequence type (ST) 8, which emerged in 1964. A second lineage emerged in 1986 and consisted of STs 5, 105, and 231. The two lineages have simultaneously disseminated across geographically distant sites. Sublineages rapidly diverged within locations in the early 2000s. Their diversification was associated with independent acquisitions of unique variants of the mobile mecA-carrying chromosomal cassette and distinct repertoires of antimicrobial resistance genes. We show that the evolution and spread of invasive multidrug-resistant MRSA in the Americas was driven by transcontinental dissemination, followed by more recent establishment and divergence of local pathogen populations. Our study highlights the need for continued international surveillance of high-risk clones to control the global health threat of multidrug resistance. IMPORTANCE Bloodstream infections due to S. aureus cause significant patient morbidity and mortality worldwide, exacerbated by the emergence and spread of methicillin resistant S. aureus (MRSA). This study provides important insights on the evolution and long-distance geographic expansion of two distinct MRSA lineages that predominate in bloodstream infections in the past 5 decades. The success of these two lineages partly lies on their acquisition of a diverse set of antimicrobial resistance genes and of unique variants of the mobile genetic element SCCmec that carries the gene mecA conferring resistance to beta-lactams. High-risk antimicrobial resistant clones can therefore rapidly disseminate across long distances and establish within local communities within a short period of time. These results have important implications for global initiatives and local epidemiological efforts to monitor and control invasive MRSA infections and transcontinental spread of multidrug resistance.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , América/epidemiologia , Antibacterianos/farmacologia , Evolução Molecular , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética
19.
Sci Rep ; 12(1): 4413, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292708

RESUMO

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) poses an important threat in human and animal health. In this study, we ask whether resistance and virulence genes in S. aureus are homogeneously distributed or constrained by different animal hosts. We carried out whole genome sequencing of 114 S. aureus isolates from ten species of animals sampled from four New England states (USA) in 2017-2019. The majority of the isolates came from cats, cows and dogs. The maximum likelihood phylogenetic tree based on the alignment of 89,143 single nucleotide polymorphisms of 1173 core genes reveal 31 sequence types (STs). The most common STs were ST5, ST8, ST30, ST133 and ST2187. Every genome carried at least eight acquired resistance genes. Genes related to resistance found in all genomes included norA (fluoroquinolone), arlRS (fluoroquinolone), lmrS (multidrug), tet(38) (tetracycline) and mepAR (multidrug and tigecycline resistance). The most common superantigen genes were tsst-1, sea and sec. Acquired antibiotic resistance (n = 10) and superantigen (n = 9) genes of S. aureus were widely shared between S. aureus lineages and between strains from different animal hosts. These analyses provide insights for considering bacterial gene sharing when developing strategies to combat the emergence of high-risk clones in animals.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Bovinos , Cães , Resistência Microbiana a Medicamentos , Feminino , Fluoroquinolonas , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Filogenia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Superantígenos , Virulência/genética , Fatores de Virulência/genética
20.
Front Microbiol ; 13: 798175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222331

RESUMO

Staphylococcus pseudintermedius is a major bacterial colonizer and opportunistic pathogen in dogs. Methicillin-resistant S. pseudintermedius (MRSP) continues to emerge as a significant challenge to maintaining canine health. We sought to determine the phylogenetic relationships of S. pseudintermedius across five states in the New England region of the United States and place them in a global context. The New England dataset consisted of 125 previously published S. pseudintermedius genomes supplemented with 45 newly sequenced isolates. The core genome phylogenetic tree revealed many deep branching lineages consisting of 142 multi-locus sequence types (STs). In silico detection of the mecA gene revealed 40 MRSP and 130 methicillin-susceptible S. pseudintermedius (MSSP) isolates. MRSP were derived from five structural types of SCCmec, the mobile genetic element that carries the mecA gene conferring methicillin resistance. Although many genomes were MSSP, they nevertheless harbored genes conferring resistance to many other antibiotic classes, including aminoglycosides, macrolides, tetracyclines and penams. We compared the New England genomes to 297 previously published genomes sampled from five other states in the United States and 13 other countries. Despite the prevalence of the clonally expanding ST71 found worldwide and in other parts of the United States, we did not detect it in New England. We next sought to interrogate the combined New England and global datasets for the presence of coincident gene pairs linked to antibiotic resistance. Analysis revealed a large co-circulating accessory gene cluster, which included mecA as well as eight other resistance genes [aac (6')-Ie-aph (2″)-Ia, aad (6), aph (3')-IIIa, sat4, ermB, cat, blaZ, and tetM]. Furthermore, MRSP isolates carried significantly more accessory genes than their MSSP counterparts. Our results provide important insights to the evolution and geographic spread of high-risk clones that can threaten the health of our canine companions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...