Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13450, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862584

RESUMO

This study tested if a high-resolution, multi-modal, multi-scale retinal imaging instrument can provide novel information about structural abnormalities in vivo. The study examined 11 patients with very mild to moderate non-proliferative diabetic retinopathy (NPDR) and 10 healthy subjects using fundus photography, optical coherence tomography (OCT), OCT angiography (OCTA), adaptive optics scanning laser ophthalmoscopy (AO-SLO), adaptive optics OCT and OCTA (AO-OCT(A)). Of 21 eyes of 11 patients, 11 had very mild NPDR, 8 had mild NPDR, 2 had moderate NPDR, and 1 had no retinopathy. Using AO-SLO, capillary looping, inflections and dilations were detected in 8 patients with very mild or mild NPDR, and microaneurysms containing hyperreflective granular elements were visible in 9 patients with mild or moderate NPDR. Most of the abnormalities were seen to be perfused in the corresponding OCTA scans while a few capillary loops appeared to be occluded or perfused at a non-detectable flow rate, possibly because of hypoperfusion. In one patient with moderate NPDR, non-perfused capillaries, also called ghost vessels, were identified by alignment of corresponding en face AO-OCT and AO-OCTA images. The combination of multiple non-invasive imaging methods could identify prominent microscopic abnormalities in diabetic retinopathy earlier and more detailed than conventional fundus imaging devices.


Assuntos
Capilares , Retinopatia Diabética , Oftalmoscopia , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/patologia , Feminino , Masculino , Oftalmoscopia/métodos , Pessoa de Meia-Idade , Capilares/diagnóstico por imagem , Capilares/patologia , Adulto , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Idoso , Angiofluoresceinografia/métodos
2.
Nat Commun ; 15(1): 3302, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658535

RESUMO

Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.


Assuntos
Cicatriz , Colágeno , Fibroblastos , Cicatrização , Peixe-Zebra , Humanos , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Colágeno/metabolismo , Cicatrização/efeitos dos fármacos , Cicatriz/metabolismo , Cicatriz/patologia , Cicatriz/tratamento farmacológico , Pele/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Fibrose , Peptídeos/farmacologia , Peptídeos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos
3.
Cells ; 12(4)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831208

RESUMO

Highly focused near-infrared (NIR) lasers have been used to induce fibroblast and neuron protrusions in a technique called optical guidance. However, little is known about the biochemical and biophysical effects that the laser provokes in the cell and optimal protocols of stimulation have not yet been established. Using intermittent NIR laser radiation and multivariate time series representations of cell leading edge movement, we analyzed the direction and velocity of cell protrusions. We found that the orientation and advance of PC12 neuron phenotype cells and 3T3 fibroblasts protrusions remain after the laser is turned off, but the observed increase in velocity stops when radiation ceases. For an increase in the speed and distance of cell protrusions by NIR laser irradiation, the cell leading edge needs to be advancing prior to the stimulation, and NIR irradiation does not enable the cell to switch between retracting and advancing states. Using timelapse imaging of actin-GFP, we observed that NIR irradiation induces a faster recruitment of actin, promoting filament formation at the induced cell protrusions. These results provide fresh evidence to understand the phenomenon of the optical guidance of cell protrusions.


Assuntos
Actinas , Luz , Fibroblastos , Citoesqueleto , Lasers
4.
Sci Rep ; 12(1): 9577, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688890

RESUMO

We present a compact multi-modal and multi-scale retinal imaging instrument with an angiographic functional extension for clinical use. The system integrates scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT) and OCT angiography (OCTA) imaging modalities and provides multi-scale fields of view. For high resolution, and high lateral resolution in particular, cellular imaging correction of aberrations by adaptive optics (AO) is employed. The entire instrument has a compact design and the scanning head is mounted on motorized translation stages that enable 3D self-alignment with respect to the subject's eye by tracking the pupil position. Retinal tracking, based on the information provided by SLO, is incorporated in the instrument to compensate for retinal motion during OCT imaging. The imaging capabilities of the multi-modal and multi-scale instrument were tested by imaging healthy volunteers and patients.


Assuntos
Pupila , Retina , Humanos , Oftalmoscopia/métodos , Óptica e Fotônica , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
5.
Cancers (Basel) ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205670

RESUMO

Protein ubiquitylation coordinates crucial cellular events in physiological and pathological conditions. A comparative analysis of the ubiquitin proteome from bortezomib (BTZ)-sensitive and BTZ-resistant mantle cell lymphoma (MCL) revealed an enrichment of the autophagy-lysosome system (ALS) in BTZ-resistant cells. Pharmacological inhibition of autophagy at the level of lysosome-fusion revealed a constitutive activation of proteaphagy and accumulation of proteasome subunits within autophagosomes in different MCL cell lines with acquired or natural resistance to BTZ. Inhibition of the autophagy receptor p62/SQSTM1 upon verteporfin (VTP) treatment disrupted proteaphagosome assembly, reduced co-localization of proteasome subunits with autophagy markers and negatively impacted proteasome activity. Finally, the silencing or pharmacological inhibition of p62 restored the apoptosis threshold at physiological levels in BTZ-resistant cells both in vitro and in vivo. In total, these results demonstrate for the first time a proteolytic switch from the ubiquitin-proteasome system (UPS) to ALS in B-cell lymphoma refractory to proteasome inhibition, pointing out a crucial role for proteaphagy in this phenomenon and paving the way for the design of alternative therapeutic venues in treatment-resistant tumors.

6.
Front Plant Sci ; 11: 796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765537

RESUMO

Bacillus firmus I-1582 is approved in Europe for the management of Meloidogyne on vegetable crops. However, little information about its modes of action and temperature requirements is available, despite the effect of these parameters in its efficacy. The cardinal temperatures for bacterial growth and biofilm formation were determined. The bacteria was transformed with GFP to study its effect on nematode eggs and root colonization of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) by laser-scanning confocal microscopy. Induction of plant resistance was determined in split-root experiments and the dynamic regulation of genes related to jasmonic acid (JA) and salicylic acid (SA) by RT-qPCR at three different times after nematode inoculation. The bacteria was able to grow and form biofilms between 15 and 45°C; it degraded egg-shells and colonized eggs; it colonized tomato roots more extensively than cucumber roots; it induced systemic resistance in tomato, but not in cucumber; SA and JA related genes were primed at different times after nematode inoculation in tomato, but only the SA-related gene was up-regulated at 7 days after nematode inoculation in cucumber. In conclusion, B. firmus I-1582 is active at a wide range of temperatures; its optimal growth temperature is 35°C; it is able to degrade Meloidogyne eggs, and to colonize plant roots, inducing systemic resistance in a plant dependent species manner.

7.
Invest Ophthalmol Vis Sci ; 61(8): 14, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658961

RESUMO

Purpose: Close to 100 genes cause retinitis pigmentosa, a Mendelian rare disease that affects 1 out of 4000 people worldwide. Mutations in the ceramide kinase-like gene (CERKL) are a prevalent cause of autosomal recessive cause retinitis pigmentosa and cone-rod dystrophy, but the functional role of this gene in the retina has yet to be fully determined. We aimed to generate a mouse model that resembles the phenotypic traits of patients carrying CERKL mutations to undertake functional studies and assay therapeutic approaches. Methods: The Cerkl locus has been deleted (around 97 kb of genomic DNA) by gene editing using the CRISPR-Cas9 D10A nickase. Because the deletion of the Cerkl locus is lethal in mice in homozygosis, a double heterozygote mouse model with less than 10% residual Cerkl expression has been generated. The phenotypic alterations of the retina of this new model have been characterized at the morphological and electrophysiological levels. Results: This CerklKD/KO model shows retinal degeneration, with a decreased number of cones and progressive photoreceptor loss, poorly stacked photoreceptor outer segment membranes, defective retinal pigment epithelium phagocytosis, and altered electrophysiological recordings in aged retinas. Conclusions: To our knowledge, this is the first Cerkl mouse model to mimic many of the phenotypic traits, including the slow but progressive retinal degeneration, shown by human patients carrying CERKL mutations. This useful model will provide unprecedented insights into the retinal molecular pathways altered in these patients and will contribute to the design of effective treatments.


Assuntos
Sistemas CRISPR-Cas/genética , DNA/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/metabolismo , Animais , Células Cultivadas , Análise Mutacional de DNA , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/patologia
8.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254022

RESUMO

We report the in vivo regulation of Inosine-5´-monophosphate dehydrogenase 1 (IMPDH1) in the retina. IMPDH1 catalyzes the rate-limiting step in the de novo synthesis of guanine nucleotides, impacting the cellular pools of GMP, GDP and GTP. Guanine nucleotide homeostasis is central to photoreceptor cells, where cGMP is the signal transducing molecule in the light response. Mutations in IMPDH1 lead to inherited blindness. We unveil a light-dependent phosphorylation of retinal IMPDH1 at Thr159/Ser160 in the Bateman domain that desensitizes the enzyme to allosteric inhibition by GDP/GTP. When exposed to bright light, living mice increase the rate of GTP and ATP synthesis in their retinas; concomitant with IMPDH1 aggregate formation at the outer segment layer. Inhibiting IMPDH activity in living mice delays rod mass recovery. We unveil a novel mechanism of regulation of IMPDH1 in vivo, important for understanding GTP homeostasis in the retina and the pathogenesis of adRP10 IMPDH1 mutations.


Assuntos
Guanosina Trifosfato/biossíntese , IMP Desidrogenase/genética , Luz , Processamento de Proteína Pós-Traducional , Retina/metabolismo , Retina/efeitos da radiação , Trifosfato de Adenosina/biossíntese , Animais , Fenômenos Bioquímicos , Regulação da Expressão Gênica , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosforilação , Estimulação Luminosa , Células Fotorreceptoras/fisiologia
9.
Cell Death Dis ; 11(1): 62, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980596

RESUMO

Loss-of-function mutations in the retinal degeneration 3 (RD3) gene cause inherited retinopathy with impaired rod and cone function and fast retinal degeneration in patients and in the natural strain of rd3 mice. The underlying physiopathology mechanisms are not well understood. We previously proposed that guanylate cyclase-activating proteins (GCAPs) might be key Ca2+-sensors mediating the physiopathology of this disorder, based on the demonstrated toxicity of GCAP2 when blocked in its Ca2+-free form at photoreceptor inner segments. We here show that the retinal degeneration in rd3 mice is substantially delayed by GCAPs ablation. While the number of retinal photoreceptor cells is halved in 6 weeks in rd3 mice, it takes 8 months to halve in rd3/rd3 GCAPs-/- mice. Although this substantial morphological rescue does not correlate with recovery of visual function due to very diminished guanylate cyclase activity in rd3 mice, it is very informative of the mechanisms underlying photoreceptor cell death. By showing that GCAP2 is mostly in its Ca2+-free-phosphorylated state in rd3 mice, we infer that the [Ca2+]i at rod inner segments is permanently low. GCAPs are therefore retained at the inner segment in their Ca2+-free, guanylate cyclase activator state. We show that in this conformational state GCAPs induce endoplasmic reticulum (ER) stress, mitochondrial swelling, and cell death. ER stress and mitochondrial swelling are early hallmarks of rd3 retinas preceding photoreceptor cell death, that are substantially rescued by GCAPs ablation. By revealing the involvement of GCAPs-induced ER stress in the physiopathology of Leber's congenital amaurosis 12 (LCA12), this work will aid to guide novel therapies to preserve retinal integrity in LCA12 patients to expand the window for gene therapy intervention to restore vision.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Proteínas 14-3-3/metabolismo , Animais , Cálcio/metabolismo , Morte Celular , Modelos Animais de Doenças , Amaurose Congênita de Leber/complicações , Amaurose Congênita de Leber/fisiopatologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dilatação Mitocondrial , Modelos Biológicos , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Retina/patologia , Retina/fisiopatologia , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Rodopsina/metabolismo , Frações Subcelulares/metabolismo , Fatores de Tempo
10.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31818830

RESUMO

Damage in biological neuronal networks triggers a complex functional reorganization whose mechanisms are still poorly understood. To delineate this reorganization process, here we investigate the functional alterations of in vitro rat cortical circuits following localized laser ablation. The analysis of the functional network configuration before and after ablation allowed us to quantify the extent of functional alterations and the characteristic spatial and temporal scales along recovery. We observed that damage precipitated a fast rerouting of information flow that restored network's communicability in about 15 min. Functional restoration was led by the immediate neighbors around trauma but was orchestrated by the entire network. Our in vitro setup exposes the ability of neuronal circuits to articulate fast responses to acute damage, and may serve as a proxy to devise recovery strategies in actual brain circuits. Moreover, this biological setup can become a benchmark to empirically test network theories about the spontaneous recovery in dynamical networks.


Assuntos
Sistema Nervoso Central , Neurônios , Recuperação de Função Fisiológica , Animais , Sistema Nervoso Central/lesões , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
11.
Nanomaterials (Basel) ; 9(4)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970600

RESUMO

Cell membrane receptors bind to extracellular ligands, triggering intracellular signal transduction pathways that result in specific cell function. Some receptors require to be associated forming clusters for effective signaling. Increasing evidences suggest that receptor clustering is subjected to spatially controlled ligand distribution at the nanoscale. Herein we present a method to produce in an easy, straightforward process, nanopatterns of biomolecular ligands to study ligand⁻receptor processes involving multivalent interactions. We based our platform in self-assembled diblock copolymers composed of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) that form PMMA nanodomains in a closed-packed hexagonal arrangement. Upon PMMA selective functionalization, biomolecular nanopatterns over large areas are produced. Nanopattern size and spacing can be controlled by the composition of the block-copolymer selected. Nanopatterns of cell adhesive peptides of different size and spacing were produced, and their impact in integrin receptor clustering and the formation of cell focal adhesions was studied. Cells on ligand nanopatterns showed an increased number of focal contacts, which were, in turn, more matured than those found in cells cultured on randomly presenting ligands. These findings suggest that our methodology is a suitable, versatile tool to study and control receptor clustering signaling and downstream cell behavior through a surface-based ligand patterning technique.

12.
Sci Rep ; 9(1): 5181, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914681

RESUMO

Soluble amyloid-ß (Aß) is considered to be a critical component in the pathogenesis of Alzheimer's disease (AD). Evidence suggests that these non-fibrillar Aß assemblies are implicated in synaptic dysfunction, neurodegeneration and cell death. However, characterization of these species comes mainly from studies in cellular or animal models, and there is little data in intact human samples due to the lack of adequate optical microscopic resolution to study these small structures. Here, to achieve super-resolution in all three dimensions, we applied Array Tomography (AT) and Stimulated Emission Depletion microscopy (STED), to characterize in postmortem human brain tissue non-fibrillar Aß structures in amyloid plaques of cases with autosomal dominant and sporadic AD. Ultrathin sections scanned with super-resolution STED microscopy allowed the detection of small Aß structures of the order of 100 nm. We reconstructed a whole human amyloid plaque and established that plaques are formed by a dense core of higher order Aß species (~0.022 µm3) and a peripheral halo of smaller Aß structures (~0.003 µm3). This work highlights the potential of AT-STED for human neuropathological studies.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Nanopartículas/química , Placa Amiloide/química , Idade de Início , Idoso de 80 Anos ou mais , Genes Dominantes , Humanos , Pessoa de Meia-Idade
13.
Sci Rep ; 8(1): 17674, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518772

RESUMO

Near infrared (NIR) laser light can have important reactions on live cells. For example, in a macroscopic scale, it is used therapeutically to reduce inflammation and in a single-cell scale, NIR lasers have been experimentally used to guide neuronal growth. However, little is known about how NIR lasers produce such behaviours on cells. In this paper we report effects of focussing a continuous wave 810-nm wavelength laser on in vivo 3T3 cells plasma membrane. Cell membranes were labelled with FM 4-64, a dye that fluoresces when associated to membrane lipids. Confocal microscopy was used to image cell membranes and perform fluorescence recovery after photobleaching (FRAP) experiments. We found that the NIR laser produces an increase of the fluorescence intensity at the location of laser spot. This intensity boost vanishes once the laser is turned off. The mean fluorescence increase, calculated over 75 independent measurements, equals 19%. The experiments reveal that the fluorescence rise is a growing function of the laser power. This dependence is well fitted with a square root function. The FRAP, when the NIR laser is acting on the cell, is twice as large as when the NIR laser is off, and the recovery time is 5 times longer. Based on the experimental evidence and a linear fluorescence model, it is shown that the NIR laser provokes a rise in the number of molecular associations dye-lipid. The results reported here may be a consequence of a combination of induced increments in membrane fluidity and exocytosis.


Assuntos
Membrana Celular/química , Membrana Celular/efeitos da radiação , Corantes Fluorescentes/análise , Células 3T3 , Animais , Membrana Celular/ultraestrutura , Fluorescência , Recuperação de Fluorescência Após Fotodegradação/métodos , Raios Infravermelhos , Lasers , Fluidez de Membrana , Camundongos , Microscopia Confocal/métodos , Imagem Óptica/métodos
14.
Nano Lett ; 18(1): 629-637, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29243484

RESUMO

Here we present a nanostructured surface able to produce multivalent interactions between surface-bound ephrinB1 ligands and membrane EphB2 receptors. We created ephrinB1 nanopatterns of regular size (<30 nm in diameter) by using self-assembled diblock copolymers. Next, we used a statistically enhanced version of the Number and Brightness technique, which can discriminate-with molecular sensitivity-the oligomeric states of diffusive species to quantitatively track the EphB2 receptor oligomerization process in real time. The results indicate that a stimulation using randomly distributed surface-bound ligands was not sufficient to fully induce receptor aggregation. Conversely, when nanopatterned onto our substrates, the ligands effectively induced a strong receptor oligomerization. This presentation of ligands improved the clustering efficiency of conventional ligand delivery systems, as it required a 9-fold lower ligand surface coverage and included faster receptor clustering kinetics compared to traditional cross-linked ligands. In conclusion, nanostructured diblock copolymers constitute a novel strategy to induce multivalent ligand-receptor interactions leading to a stronger, faster, and more efficient receptor activation, thus providing a useful strategy to precisely tune and potentiate receptor responses. The efficiency of these materials at inducing cell responses can benefit applications such as the design of new bioactive materials and drug-delivery systems.


Assuntos
Efrina-B1/metabolismo , Proteínas Imobilizadas/metabolismo , Nanoestruturas/química , Polimetil Metacrilato/química , Receptor EphB2/metabolismo , Efrina-B1/química , Células HEK293 , Humanos , Proteínas Imobilizadas/química , Ligantes , Nanoestruturas/ultraestrutura , Agregados Proteicos , Multimerização Proteica , Receptor EphB2/química
15.
Brain ; 140(12): 3204-3214, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177427

RESUMO

Dementia with Lewy bodies is characterized by the accumulation of Lewy bodies and Lewy neurites in the CNS, both of which are composed mainly of aggregated α-synuclein phosphorylated at Ser129. Although phosphorylated α-synuclein is believed to exert toxic effects at the synapse in dementia with Lewy bodies and other α-synucleinopathies, direct evidence for the precise synaptic localization has been difficult to achieve due to the lack of adequate optical microscopic resolution to study human synapses. In the present study we applied array tomography, a microscopy technique that combines ultrathin sectioning of tissue with immunofluorescence allowing precise identification of small structures, to quantitatively investigate the synaptic phosphorylated α-synuclein pathology in dementia with Lewy bodies. We performed array tomography on human brain samples from five patients with dementia with Lewy bodies, five patients with Alzheimer's disease and five healthy control subjects to analyse the presence of phosphorylated α-synuclein immunoreactivity at the synapse and their relationship with synapse size. Main analyses were performed in blocks from cingulate cortex and confirmed in blocks from the striatum of cases with dementia with Lewy bodies. A total of 1 318 700 single pre- or postsynaptic terminals were analysed. We found that phosphorylated α-synuclein is present exclusively in dementia with Lewy bodies cases, where it can be identified in the form of Lewy bodies, Lewy neurites and small aggregates (<0.16 µm3). Between 19% and 25% of phosphorylated α-synuclein deposits were found in presynaptic terminals mainly in the form of small aggregates. Synaptic terminals that co-localized with small aggregates of phosphorylated α-synuclein were significantly larger than those that did not. Finally, a gradient of phosphorylated α-synuclein aggregation in synapses (pre > pre + post > postsynaptic) was observed. These results indicate that phosphorylated α-synuclein is found at the presynaptic terminals of dementia with Lewy bodies cases mainly in the form of small phosphorylated α-synuclein aggregates that are associated with changes in synaptic morphology. Overall, our data support the notion that pathological phosphorylated α-synuclein may disrupt the structure and function of the synapse in dementia with Lewy bodies.


Assuntos
Giro do Cíngulo/metabolismo , Doença por Corpos de Lewy/metabolismo , Neostriado/metabolismo , Fosfoproteínas/metabolismo , Sinapses/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
16.
Biomed Opt Express ; 8(5): 2472-2482, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28663885

RESUMO

Due to relatively high powers used in STED, biological samples may be affected by the illumination in the process of image acquisition. Similarly, the performance of the system may be limited by the sample itself. Optimization of the STED parameters taking into account the sample itself is therefore a complex task as there is no clear methodology that can determine the image improvement in an objective and quantitative manner. In this work, a method based on Fourier transform formalism is presented to analyze the performance of a STED system. The spatial frequency distribution of pairs of confocal and STED images are compared to obtain an objective parameter, the Azimuth Averaged Spectral Content Spread (AASCS), that is related to the performance of the system in which the sample is also considered. The method has been first tested on samples of beads, and then applied to cell samples labeled with multiple fluorescent dyes. The results show that a single parameter, the AASCS, can be used to determine the optimal settings for STED image acquisition in an objective way, only by using the information provided by the images from the sample themselves. The AASCS also helps minimize the depletion power, for better preservation of the samples.

17.
Sci Rep ; 7(1): 1505, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473723

RESUMO

In Marfan syndrome, the tunica media is disrupted, which leads to the formation of ascending aortic aneurysms. Marfan aortic samples are histologically characterized by the fragmentation of elastic laminae. However, conventional histological techniques using transverse sections provide limited information about the precise location, progression and 3D extension of the microstructural changes that occur in each lamina. We implemented a method using multiphoton excitation fluorescence microscopy and computational image processing, which provides high-resolution en-face images of segmented individual laminae from unstained whole aortic samples. We showed that internal elastic laminae and successive 2nd laminae are injured to a different extent in murine Marfan aortae; in particular, the density and size of fenestrae changed. Moreover, microstructural injuries were concentrated in the aortic proximal and convex anatomical regions. Other parameters such as the waviness and thickness of each lamina remained unaltered. In conclusion, the method reported here is a useful, unique tool for en-face laminae microstructure assessment that can obtain quantitative three-dimensional information about vascular tissue. The application of this method to murine Marfan aortae clearly shows that the microstructural damage in elastic laminae is not equal throughout the thickness of the tunica media and in the different anatomical regions of the ascending aorta.


Assuntos
Aorta/patologia , Tecido Elástico/patologia , Síndrome de Marfan/patologia , Animais , Aorta/diagnóstico por imagem , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Síndrome de Marfan/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica
18.
Sci Rep ; 7: 44939, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322312

RESUMO

Tissue mimics (TMs) on the scale of several hundred microns provide a beneficial cell culture configuration for in vitro engineered tissue and are currently under the spotlight in tissue engineering and regenerative medicine. Due to the cell density and size, TMs are fairly inaccessible to optical observation and imaging within these samples remains challenging. Light Sheet Fluorescence Microscopy (LSFM)- an emerging and attractive technique for 3D optical sectioning of large samples- appears to be a particularly well-suited approach to deal with them. In this work, we compared the effectiveness of different light sheet illumination modalities reported in the literature to improve resolution and/or light exposure for complex 3D samples. In order to provide an acute and fair comparative assessment, we also developed a systematic, computerized benchmarking method. The outcomes of our experiment provide meaningful information for valid comparisons and arises the main differences between the modalities when imaging different types of TMs.


Assuntos
Biomimética/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Ratos , Imagem com Lapso de Tempo
19.
Plant J ; 85(1): 107-19, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26648446

RESUMO

Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health-promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome-interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF-mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self-shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co-opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid-enriched fruits.


Assuntos
Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos da radiação , Solanum lycopersicum/fisiologia , Clorofila/metabolismo , Meio Ambiente , Etilenos/metabolismo , Frutas/genética , Frutas/fisiologia , Frutas/efeitos da radiação , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos da radiação , Fitocromo/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Terpenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
PLoS One ; 7(4): e35795, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558226

RESUMO

Inhomogeneity in thick biological specimens results in poor imaging by light microscopy, which deteriorates as the focal plane moves deeper into the specimen. Here, we have combined selective plane illumination microscopy (SPIM) with wavefront sensor adaptive optics (wao). Our waoSPIM is based on a direct wavefront measure using a Hartmann-Shack wavefront sensor and fluorescent beads as point source emitters. We demonstrate the use of this waoSPIM method to correct distortions in three-dimensional biological imaging and to improve the quality of images from deep within thick inhomogeneous samples.


Assuntos
Imageamento Tridimensional/métodos , Microscopia/métodos , Óptica e Fotônica/métodos , Fluorescência , Luz , Iluminação , Microscopia/instrumentação , Dispositivos Ópticos , Óptica e Fotônica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...