Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
EFSA J ; 22(7): e8883, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015303

RESUMO

The European Commission requested an estimation of the BSE risk (C-, L- and H-BSE) from gelatine and collagen derived from ovine, caprine or bovine bones, and produced in accordance with Regulation (EC) No 853/2004, or Regulation (EC) No 1069/2009 and its implementing Regulation (EU) No 142/2011. A quantitative risk assessment was developed to estimate the BSE infectivity, measured in cattle oral infectious dose 50 (CoID50), in a small size batch of gelatine including one BSE-infected bovine or ovine animal at the clinical stage. The model was built on a scenario where all ruminant bones could be used for the production of gelatine and high-infectivity tissues remained attached to the skull (brain) and vertebral column (spinal cord). The risk and exposure pathways defined for humans and animals, respectively, were identified. Exposure routes other than oral via food and feed were considered and discussed but not assessed quantitatively. Other aspects were also considered as integrating evidence, like the epidemiological situation of the disease, the species barrier, the susceptibility of species to BSE and the assumption of an exponential dose-response relationship to determine the probability of BSE infection in ruminants. Exposure to infectivity in humans cannot be directly translated to risk of disease because the transmission barrier has not yet been quantified, although it is considered to be substantial, i.e. much greater amounts of infectivity would be needed to successfully infect a human and greater in the oral than in the parenteral route of exposure. The probability that no new case of BSE in the cattle or small ruminant population would be generated through oral exposure to gelatine made of ruminant bones is 99%-100% (almost certain) This conclusion is based on the current state of knowledge, the epidemiological situation of the disease and the current practices, and is also valid for collagen.

2.
Acta Neuropathol ; 148(1): 2, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980441

RESUMO

Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Doenças Neurodegenerativas , Humanos , Proteína ADAM10/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Proteínas Priônicas/metabolismo , Proteínas de Membrana/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Anticorpos
3.
J Infect Dis ; 230(1): 161-171, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052723

RESUMO

BACKGROUND: Atypical/Nor98 scrapie (AS) is an idiopathic infectious prion disease affecting sheep and goats. Recent findings suggest that zoonotic prions from classical bovine spongiform encephalopathy (C-BSE) may copropagate with atypical/Nor98 prions in AS sheep brains. Investigating the risk AS poses to humans is crucial. METHODS: To assess the risk of sheep/goat-to-human transmission of AS, we serially inoculated brain tissue from field and laboratory isolates into transgenic mice overexpressing human prion protein (Met129 allele). We studied clinical outcomes as well as presence of prions in brains and spleens. RESULTS: No transmission occurred on the primary passage, with no clinical disease or pathological prion protein in brains and spleens. On subsequent passages, 1 isolate gradually adapted, manifesting as prions with a phenotype resembling those causing MM1-type sporadic Creutzfeldt-Jakob disease in humans. However, further characterization using in vivo and in vitro techniques confirmed both prion agents as different strains, revealing a case of phenotypic convergence. Importantly, no C-BSE prions emerged in these mice, especially in the spleen, which is more permissive than the brain for C-BSE cross-species transmission. CONCLUSIONS: The results obtained suggest a low zoonotic potential for AS. Rare adaptation may allow the emergence of prions phenotypically resembling those spontaneously forming in humans.


Assuntos
Encéfalo , Síndrome de Creutzfeldt-Jakob , Cabras , Camundongos Transgênicos , Príons , Scrapie , Zoonoses , Animais , Síndrome de Creutzfeldt-Jakob/transmissão , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Humanos , Scrapie/transmissão , Scrapie/patologia , Camundongos , Zoonoses/transmissão , Encéfalo/patologia , Encéfalo/metabolismo , Ovinos , Bovinos , Príons/metabolismo , Fenótipo , Baço/patologia , Encefalopatia Espongiforme Bovina/transmissão , Encefalopatia Espongiforme Bovina/patologia , Encefalopatia Espongiforme Bovina/metabolismo , Doenças das Cabras/transmissão , Doenças das Cabras/patologia , Modelos Animais de Doenças
4.
Vet Res ; 55(1): 62, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750594

RESUMO

The first case of CWD in a Norwegian red deer was detected by a routine ELISA test and confirmed by western blotting and immunohistochemistry in the brain stem of the animal. Two different western blotting tests were conducted independently in two different laboratories, showing that the red deer glycoprofile was different from the Norwegian CWD reindeer and CWD moose and from North American CWD. The isolate showed nevertheless features similar to the classical BSE (BSE-C) strain. Furthermore, BSE-C could not be excluded based on the PrPSc immunohistochemistry staining in the brainstem and the absence of detectable PrPSc in the lymphoid tissues. Because of the known ability of BSE-C to cross species barriers as well as its zoonotic potential, the CWD red deer isolate was submitted to the EURL Strain Typing Expert Group (STEG) as a BSE-C suspect for further investigation. In addition, different strain typing in vivo and in vitro strategies aiming at identifying the BSE-C strain in the red deer isolate were performed independently in three research groups and BSE-C was not found in it. These results suggest that the Norwegian CWD red deer case was infected with a previously unknown CWD type and further investigation is needed to determine the characteristics of this potential new CWD strain.


Assuntos
Cervos , Encefalopatia Espongiforme Bovina , Doença de Emaciação Crônica , Animais , Noruega , Western Blotting/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Príons/metabolismo , Bovinos , Imuno-Histoquímica/veterinária , Proteínas PrPSc/metabolismo
5.
J Infect Dis ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401890

RESUMO

BACKGROUND: Atypical/Nor98 scrapie (AS) is an idiopathic infectious prion disease affecting sheep and goats. Recent findings suggest that zoonotic prions from bovine spongiform encephalopathy (C-BSE) may co-propagate with atypical/Nor98 prions in AS sheep brains. Investigating the risk AS poses to humans is crucial. METHODS: To assess the risk of sheep/goat-to-human transmission of AS, we serially inoculated brain tissue from field and laboratory isolates into transgenic mice overexpressing human prion protein (Met129 allele). We studied clinical outcomes as well as presence of prions in brains and spleens. RESULTS: No transmission occurred on the primary passage, with no clinical disease or pathological prion protein in brains and spleens. On subsequent passages, one isolate gradually adapted, manifesting as prions with a phenotype resembling those causing MM1-type sporadic Creutzfeldt-Jakob disease in humans. However, further characterization using in vivo and in vitro techniques confirmed both prion agents as different strains, revealing a case of phenotypic convergence. Importantly, no C-BSE prions emerged in these mice, especially in the spleen, which is more permissive than the brain for C-BSE cross-species transmission. CONCLUSIONS: The results obtained suggest a low the zoonotic for AS. Rare adaptation may allow the emergence of prions phenotypically resembling those spontaneously forming in humans.

6.
Vet Res ; 54(1): 89, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794450

RESUMO

The emergence of bovine spongiform encephalopathy (BSE) prions from atypical scrapie has been recently observed upon experimental transmission to rodent and swine models. This study aimed to assess whether the inoculation of atypical scrapie could induce BSE-like disease in cattle. Four calves were intracerebrally challenged with atypical scrapie. Animals were euthanized without clinical signs of prion disease and tested negative for PrPSc accumulation by immunohistochemistry and western blotting. However, an emergence of BSE-like prion seeding activity was detected during in vitro propagation of brain samples from the inoculated animals. These findings suggest that atypical scrapie may represent a potential source of BSE infection in cattle.


Assuntos
Doenças dos Bovinos , Encefalopatia Espongiforme Bovina , Doenças Priônicas , Príons , Scrapie , Doenças dos Ovinos , Doenças dos Suínos , Ovinos , Feminino , Bovinos , Animais , Suínos , Doenças Priônicas/veterinária , Encéfalo/metabolismo
7.
Cell Tissue Res ; 392(1): 47-62, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35092497

RESUMO

Prion diseases are fatal neurodegenerative conditions of humans and various vertebrate species that are transmissible between individuals of the same or different species. A novel infectious moiety referred to as a prion is considered responsible for transmission of these conditions. Prion replication is believed to be the cause of the neurotoxicity that arises during prion disease pathogenesis. The prion hypothesis predicts that the transmissible prion agent consists of PrPSc, which is comprised of aggregated misfolded conformers of the normal host protein PrPC. It is important to understand the biology of transmissible prions and to identify genetic modifiers of prion-induced neurotoxicity. This information will underpin the development of therapeutic and control strategies for human and animal prion diseases. The most reliable method to detect prion infectivity is by in vivo transmission in a suitable experimental host, which to date have been mammalian species. Current prion bioassays are slow, cumbersome and relatively insensitive to low titres of prion infectivity, and do not lend themselves to rapid genetic analysis of prion disease. Here, we provide an overview of our novel studies that have led to the establishment of Drosophila melanogaster, a genetically well-defined invertebrate host, as a sensitive, versatile and economically viable animal model for the detection of mammalian prion infectivity and genetic modifiers of prion-induced toxicity.


Assuntos
Doenças Priônicas , Príons , Animais , Humanos , Drosophila , Drosophila melanogaster/genética , Animais Geneticamente Modificados , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/metabolismo , Mamíferos/metabolismo
8.
PLoS Pathog ; 18(10): e1010900, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36206325

RESUMO

The role of the glycosylation status of PrPC in the conversion to its pathological counterpart and on cross-species transmission of prion strains has been widely discussed. Here, we assessed the effect on strain characteristics of bovine spongiform encephalopathy (BSE) isolates with different transmission histories upon propagation on a model expressing a non-glycosylated human PrPC. Bovine, ovine and porcine-passaged BSE, and variant Creutzfeldt-Jakob disease (vCJD) isolates were used as seeds/inocula in both in vitro and in vivo propagation assays using the non-glycosylated human PrPC-expressing mouse model (TgNN6h). After protein misfolding cyclic amplification (PMCA), all isolates maintained the biochemical characteristics of BSE. On bioassay, all PMCA-propagated BSE prions were readily transmitted to TgNN6h mice, in agreement with our previous in vitro results. TgNN6h mice reproduced the characteristic neuropathological and biochemical hallmarks of BSE, suggesting that the absence of glycans did not alter the pathobiological features of BSE prions. Moreover, back-passage of TgNN6h-adapted BSE prions to BoTg110 mice recovered the full BSE phenotype, confirming that the glycosylation of human PrPC is not essential for the preservation of the human transmission barrier for BSE prions or for the maintenance of BSE strain properties.


Assuntos
Síndrome de Creutzfeldt-Jakob , Encefalopatia Espongiforme Bovina , Príons , Animais , Ovinos , Bovinos , Camundongos , Humanos , Suínos , Encefalopatia Espongiforme Bovina/patologia , Camundongos Transgênicos , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/patologia , Príons/metabolismo , Polissacarídeos/metabolismo , Carneiro Doméstico/metabolismo
9.
Brain ; 145(9): 3236-3249, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35446941

RESUMO

The metazoan Hsp70 disaggregase protects neurons from proteotoxicity that arises from the accumulation of misfolded protein aggregates. Hsp70 and its co-chaperones disassemble and extract polypeptides from protein aggregates for refolding or degradation. The effectiveness of the chaperone system decreases with age and leads to accumulation rather than removal of neurotoxic protein aggregates. Therapeutic enhancement of the Hsp70 protein disassembly machinery is proposed to counter late-onset protein misfolding neurodegenerative disease that may arise. In the context of prion disease, it is not known whether stimulation of protein aggregate disassembly paradoxically leads to enhanced formation of seeding competent species of disease-specific proteins and acceleration of neurodegenerative disease. Here we have tested the hypothesis that modulation of Hsp70 disaggregase activity perturbs mammalian prion-induced neurotoxicity and prion seeding activity. To do so we used prion protein (PrP) transgenic Drosophila that authentically replicate mammalian prions. RNASeq identified that Hsp70, DnaJ-1 and Hsp110 gene expression was downregulated in prion-exposed PrP Drosophila. We demonstrated that RNAi knockdown of Hsp110 or DnaJ-1 gene expression in variant Creutzfeldt-Jakob disease prion-exposed human PrP Drosophila enhanced neurotoxicity, whereas overexpression mitigated toxicity. Strikingly, prion seeding activity in variant Creutzfeldt-Jakob disease prion-exposed human PrP Drosophila was ablated or reduced by Hsp110 or DnaJ-1 overexpression, respectively. Similar effects were seen in scrapie prion-exposed ovine PrP Drosophila with modified Hsp110 or DnaJ-1 gene expression. These unique observations show that the metazoan Hsp70 disaggregase facilitates the clearance of mammalian prions and that its enhanced activity is a potential therapeutic strategy for human prion disease.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Neurodegenerativas , Doenças Priônicas , Príons , Animais , Drosophila/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Proteínas Priônicas/metabolismo , Príons/genética , Agregados Proteicos , Ovinos
10.
Vet Res ; 52(1): 128, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620247

RESUMO

To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.


Assuntos
Cervos , Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Animais , Genótipo , Polimorfismo Genético , Proteínas Priônicas/metabolismo , Seleção Genética
11.
Sci Rep ; 11(1): 17428, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465826

RESUMO

Pigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8-9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.


Assuntos
Encéfalo/patologia , Suscetibilidade a Doenças , Encefalopatia Espongiforme Bovina/patologia , Proteínas PrPSc/metabolismo , Príons/fisiologia , Scrapie/patologia , Animais , Encéfalo/metabolismo , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/transmissão , Feminino , Masculino , Camundongos , Scrapie/metabolismo , Scrapie/transmissão , Suínos , Porco Miniatura
12.
Acta Neuropathol Commun ; 9(1): 145, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454616

RESUMO

Treatment with human pituitary-derived growth hormone (hGH) was responsible for a significant proportion of iatrogenic Creutzfeldt-Jakob disease (iCJD) cases. France and the UK experienced the largest case numbers of hGH-iCJD, with 122 and 81 cases respectively. Differences in the frequency of the three PRNP codon 129 polymorphisms (MM, MV and VV) and the estimated incubation periods associated with each of these genotypes in the French and the UK hGH-iCJD cohorts led to the suggestion that the prion strains responsible for these two hGH-iCJD cohorts were different. In this study, we characterized the prion strains responsible for hGH-iCJD cases originating from UK (n = 11) and France (n = 11) using human PrP expressing mouse models. The cases included PRNP MM, MV and VV genotypes from both countries. UK and French sporadic CJD (sCJD) cases were included as controls. The prion strains identified following inoculation with hGH-iCJD homogenates corresponded to the two most frequently observed sCJD prion strains (M1CJD and V2CJD). However, in clear contradiction to the initial hypothesis, the prion strains that were identified in the UK and the French hGH-iCJD cases were not radically different. In the vast majority of the cases originating from both countries, the V2CJD strain or a mixture of M1CJD + V2CJD strains were identified. These data strongly support the contention that the differences in the epidemiological and genetic profiles observed in the UK and France hGH-iCJD cohorts cannot be attributed only to the transmission of different prion strains.


Assuntos
Síndrome de Creutzfeldt-Jakob/epidemiologia , Síndrome de Creutzfeldt-Jakob/patologia , Encefalopatia Espongiforme Bovina/epidemiologia , Encefalopatia Espongiforme Bovina/patologia , Hormônio do Crescimento Humano/efeitos adversos , Proteínas PrPSc/efeitos adversos , Adulto , Animais , Estudos de Coortes , Síndrome de Creutzfeldt-Jakob/transmissão , Encefalopatia Espongiforme Bovina/transmissão , Feminino , França/epidemiologia , Hormônio do Crescimento Humano/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas PrPSc/administração & dosagem , Proteínas PrPSc/isolamento & purificação , Reino Unido/epidemiologia
13.
J Biol Chem ; 297(2): 100878, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34270959

RESUMO

Prions are transmissible protein pathogens most reliably detected by a bioassay in a suitable host, typically mice. However, the mouse bioassay is slow and cumbersome, and relatively insensitive to low titers of prion infectivity. Prions can be detected biochemically in vitro by the protein misfolding cyclic amplification (PMCA) technique, which amplifies disease-associated prion protein but does not detect bona fide prion infectivity. Here, we demonstrate that Drosophila transgenic for bovine prion protein (PrP) expression can serve as a model system for the detection of bovine prions significantly more efficiently than either the mouse prion bioassay or PMCA. Strikingly, bovine PrP transgenic Drosophila could detect bovine prion infectivity in the region of a 10-12 dilution of classical bovine spongiform encephalopathy (BSE) inoculum, which is 106-fold more sensitive than that achieved by the bovine PrP mouse bioassay. A similar level of sensitivity was observed in the detection of H-type and L-type atypical BSE and sheep-passaged BSE by bovine PrP transgenic Drosophila. Bioassays of bovine prions in Drosophila were performed within 7 weeks, whereas the mouse prion bioassay required at least a year to assess the same inoculum. In addition, bovine PrP transgenic Drosophila could detect classical BSE at a level 105-fold lower than that achieved by PMCA. These data show that PrP transgenic Drosophila represent a new tractable prion bioassay for the efficient and sensitive detection of mammalian prions, including those of known zoonotic potential.


Assuntos
Bioensaio/métodos , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Proteínas Priônicas/metabolismo , Príons/metabolismo , Animais , Animais Geneticamente Modificados , Bovinos , Drosophila/genética , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/transmissão , Modelos Teóricos
14.
Prion ; 15(1): 112-120, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34225562

RESUMO

Glial vulnerability to prions is assessed in murine Creutzfeldt-Jakob disease (CJD) using the tg340 mouse line expressing four-fold human PrP M129 levels on a mouse PrP null background at different days following intracerebral inoculation of sCJD MM1 brain tissues homogenates. The mRNA expression of several astrocyte markers, including glial fibrillary acidic protein (gfap), aquaporin-4 (aqp4), solute carrier family 16, member 4 (mct4), mitochondrial pyruvate carrier 1 (mpc1) and solute carrier family 1, member 2 (glial high-affinity glutamate transporter, slc1a2) increases at 120 and 180 dpi. In contrast, the mRNA expression of oligodendrocyte and myelin markers oligodendrocyte transcription factor 1 (olig1), olig2, neural/glial antigen 2 (cspg), solute carrier family 16, member 1 (mct1), myelin basic protein (mbp), myelin oligodendrocyte glycoprotein (mog) and proteolipid protein 1 (plp1) is preserved. Yet, myelin regulatory factor (myrf) mRNA is increased at 180 dpi. In the striatum, a non-significant increase in the number of GFAP-positive astrocytes and Iba1-immunoreactive microglia occurs at 160 dpi; a significant increase in the number of astrocytes and microglia, and a significant reduction in the number of Olig2-immunoreactive oligodendrocytes occur at 180 dpi. A decrease of MBP, but not PLP1, immunoreactivity is also observed in the striatal fascicles. These observations confirm the vulnerability and the reactive responses of astrocytes, together with the microgliosis at middle stages of prion diseases. More importantly, these findings show oligodendrocyte vulnerability and myelin alterations at advanced stages of murine CJD. They confirm oligodendrocyte involvement in the pathogenesis of CJD.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Animais , Astrócitos , Síndrome de Creutzfeldt-Jakob/genética , Camundongos , Bainha de Mielina , Oligodendroglia
15.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201940

RESUMO

Diagnosis of transmissible spongiform encephalopathies (TSEs), or prion diseases, is based on the detection of proteinase K (PK)-resistant PrPSc in post-mortem tissues as indication of infection and disease. Since PrPSc detection is not considered a reliable method for in vivo diagnosis in most TSEs, it is of crucial importance to identify an alternative source of biomarkers to provide useful alternatives for current diagnostic methodology. Ovine scrapie is the prototype of TSEs and has been known for a long time. Using this natural model of TSE, we investigated the presence of PrPSc in exosomes derived from plasma and cerebrospinal fluid (CSF) by protein misfolding cyclic amplification (PMCA) and the levels of candidate microRNAs (miRNAs) by quantitative PCR (qPCR). Significant scrapie-associated increase was found for miR-21-5p in plasma-derived but not in CSF-derived exosomes. However, miR-342-3p, miR-146a-5p, miR-128-3p and miR-21-5p displayed higher levels in total CSF from scrapie-infected sheep. The analysis of overexpressed miRNAs in this biofluid, together with plasma exosomal miR-21-5p, could help in scrapie diagnosis once the presence of the disease is suspected. In addition, we found the presence of PrPSc in most CSF-derived exosomes from clinically affected sheep, which may facilitate in vivo diagnosis of prion diseases, at least during the clinical stage.


Assuntos
Biomarcadores , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/ultraestrutura , MicroRNAs/sangue , MicroRNAs/líquido cefalorraquidiano , Doenças Priônicas/sangue , Doenças Priônicas/líquido cefalorraquidiano
16.
Brain Commun ; 3(2): fcab092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997785

RESUMO

Prions are neurotropic pathogens composed of misfolded assemblies of the host-encoded prion protein PrPC which replicate by recruitment and conversion of further PrPC by an autocatalytic seeding polymerization process. While it has long been shown that mouse-adapted prions cannot replicate and are rapidly cleared in transgenic PrP0/0 mice invalidated for PrPC, these experiments have not been done with other prions, including from natural resources, and more sensitive methods to detect prion biological activity. Using transgenic mice expressing human PrP to bioassay prion infectivity and RT-QuIC cell-free assay to measure prion seeding activity, we report that prions responsible for the most prevalent form of sporadic Creutzfeldt-Jakob disease in human (MM1-sCJD) can persist indefinitely in the brain of intra-cerebrally inoculated PrP0/0 mice. While low levels of seeding activity were measured by RT-QuIC in the brain of the challenged PrP0/0 mice, the bio-indicator humanized mice succumbed at a high attack rate, suggesting relatively high levels of persistent infectivity. Remarkably, these humanized mice succumbed with delayed kinetics as compared to MM1-sCJD prions directly inoculated at low doses, including the limiting one. Yet, the disease that did occur in the humanized mice on primary and subsequent back-passage from PrP0/0 mice shared the neuropathological and molecular characteristics of MM1-sCJD prions, suggesting no apparent strain evolution during lifelong dormancy in PrP0/0 brain. Thus, MM1-sCJD prions can persist for the entire life in PrP0/0 brain with potential disease potentiation on retrotransmission to susceptible hosts. These findings highlight the capacity of prions to persist and rejuvenate in non-replicative environments, interrogate on the type of prion assemblies at work and alert on the risk of indefinite prion persistence with PrP-lowering therapeutic strategies.

17.
Vet Res ; 52(1): 57, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858518

RESUMO

The diversity of goat scrapie strains in Europe has recently been studied using bioassays in a wide collection of rodent models, resulting in the classification of classical scrapie into four different categories. However, the sole use of the first passage does not lead to isolate adaptation and identification of the strains involved and might therefore lead to misclassification of some scrapie isolates. Therefore, this work reports the complete transmission study of a wide collection of goat transmissible spongiform encephalopathy (TSE) isolates by intracranial inoculation in two transgenic mouse lines overexpressing either small ruminant (TgGoat-ARQ) or bovine (TgBov) PrPC. To compare scrapie strains in sheep and goats, sheep scrapie isolates from different European countries were also included in the study. Once the species barrier phenomenon was overcome, an accurate classification of the isolates was attained. Thus, the use of just two rodent models allowed us to fully differentiate at least four different classical scrapie strains in small ruminants and to identify isolates containing mixtures of strains. This work reinforces the idea that classical scrapie in small ruminants is a prion disease caused by multiple different prion strains and not by a single strain, as is the case for epidemic classical bovine spongiform encephalopathy (BSE-C). In addition, the clear dissimilarity between the different scrapie strains and BSE-C does not support the idea that classical scrapie is the origin of epidemic BSE-C.


Assuntos
Doenças das Cabras/etiologia , Príons/efeitos adversos , Scrapie/etiologia , Doenças dos Ovinos/etiologia , Animais , Europa (Continente) , Cabras , Ovinos , Carneiro Doméstico
18.
Vet Res ; 52(1): 59, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863379

RESUMO

The unconventional infectious agents of transmissible spongiform encephalopathies (TSEs) are prions. Their infectivity co-appears with PrPSc, aberrant depositions of the host's cellular prion protein (PrPC). Successive heat treatment in the presence of detergent and proteolysis by a keratinase from Bacillus licheniformis PWD-1 was shown before to destroy PrPSc from bovine TSE (BSE) and sheep scrapie diseased brain, however data regarding expected reduction of infectivity were still lacking. Therefore, transgenic Tgbov XV mice which are highly BSE susceptible were used to quantify infectivity before and after the bovine brain treatment procedure. Also four immunochemical analyses were applied to compare the levels of PrPSc. After heating at 115 °C with or without subsequent proteolysis, the original BSE infectivity of 106.2-6.4 ID50 g-1 was reduced to a remaining infectivity of 104.6-5.7 ID50 g-1 while strain characteristics were unaltered, even after precipitation with methanol. Surprisingly, PrPSc depletion was 5-800 times higher than the loss of infectivity. Similar treatment was applied on other prion strains, which were CWD1 in bank voles, 263 K scrapie in hamsters and sheep PG127 scrapie in tg338 ovinized mice. In these strains however, infectivity was already destroyed by heat only. These findings show the unusual heat resistance of BSE and support a role for an additional factor in prion formation as suggested elsewhere when producing prions from PrPC. Leftover material in the remaining PrPSc depleted BSE preparation offers a unique substrate for searching additional elements for prion infectivity and improving our concept about the nature of prions.


Assuntos
Bacillus licheniformis/química , Encefalopatia Espongiforme Bovina/etiologia , Temperatura Alta , Peptídeo Hidrolases/metabolismo , Proteínas Priônicas/química , Proteólise , Animais , Bacillus licheniformis/enzimologia , Bovinos , Camundongos Transgênicos
19.
PLoS Pathog ; 17(4): e1009511, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33844702

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1009232.].

20.
Biochem Biophys Res Commun ; 551: 1-6, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33713980

RESUMO

Shadoo and PrP belongs to the same protein family, whose biological function remains poorly understood. Previous experiments reported potential functional redundancies or antagonisms between these two proteins, depending on the tissue analysed. While knockdown experiments suggested the requirement of Shadoo in the absence of PrP during early mouse embryogenesis, knockout ones, on the contrary, highlighted little impact, if any, of the double-knockout of these two loci. In the present study, we reinvestigated the phenotype associated with the concomitant knockout of these two genes using newly produced FVB/N Sprn knockout mice. In this genetic background, the combined two genes' knockout induces intra-uterine growth retardations, likely resulting from placental failures highlighted by transcriptomic analyses that revealed potential redundant or antagonist roles of these two proteins in different developmental-related pathways. It also induced an increased perinatal-lethality and ascertained the role of these two loci in the lactation process.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas Priônicas/metabolismo , Reprodução/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Desenvolvimento Embrionário , Feminino , Proteínas Ligadas por GPI , Genes Letais , Lactação/genética , Lactação/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Placentação , Gravidez , Proteínas Priônicas/deficiência , Proteínas Priônicas/genética , Reprodução/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...