Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 17(6): 064107, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38162227

RESUMO

Acoustic manipulation of particles in microchannels has recently gained much attention. Ultrasonic standing wave (USW) separation of oil droplets or particles is an established technology for microscale applications. Acoustofluidic devices are normally operated at optimized conditions, namely, resonant frequency, to minimize power consumption. It has been recently shown that symmetry breaking is needed to obtain efficient conditions for acoustic particle trapping. In this work, we study the acoustophoretic behavior of monodisperse oil droplets (silicone oil and hexadecane) in water in the microfluidic chip operating at a non-resonant frequency and an off-center placement of the transducer. Finite element-based computer simulations are further performed to investigate the influence of these conditions on the acoustic pressure distribution and oil trapping behavior. Via investigating the Gor'kov potential, we obtained an overlap between the trapping patterns obtained in experiments and simulations. We demonstrate that an off-center placement of the transducer and driving the transducer at a non-resonant frequency can still lead to predictable behavior of particles in acoustofluidics. This is relevant to applications in which the theoretical resonant frequency cannot be achieved, e.g., manipulation of biological matter within living tissues.

2.
Ultrasonics ; 54(6): 1631-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24735932

RESUMO

Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is considered in the adjustment procedure, the obtained material properties allow simulating the displacement amplitude accurately.

3.
Rev Sci Instrum ; 85(1): 015110, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517815

RESUMO

A novel method for predictions of the sound pressure distribution in acoustic levitators is based on a matrix representation of the Rayleigh integral. This method allows for a fast calculation of the acoustic field within the resonator. To make sure that the underlying assumptions and simplifications are justified, this approach was tested by a direct comparison to experimental data. The experimental sound pressure distributions were recorded by high spatially resolved frequency selective microphone scanning. To emphasize the general applicability of the two approaches, the comparative studies were conducted for four different resonator geometries. In all cases, the results show an excellent agreement, demonstrating the accuracy of the matrix method.

4.
Ultrasonics ; 50(7): 704-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20207388

RESUMO

The therapeutic ultrasound (US) is one of the resources mostly used by physiotherapists; however the use of uncalibrated equipment results in inefficient or even harmful therapies to the patient. In this direction, the objective of this study was to evaluate the performance and the procedures of utilization and maintenance of US in use in clinics and Physical-therapy offices. A questionnaire with questions related to the procedures applied in service during the use of therapeutic ultrasound was applied to physiotherapists. The performance of 31 equipment of 6 different brands and 13 different models was evaluated according to the IEC 61689 norm. The parameters measured were: acoustic power; effective radiating area (AER); non-uniformity ratio of the beam (RBN); maximum effective intensity; acoustic frequency of operation, modulation factor and wave form on pulsate mode. As for the questionnaires, it was evident that the professionals are not concerned about the calibration of the equipment. The results demonstrated that only 32.3% of the equipment were in accordance with the norms for the variables power and effective radiation area. The frequency analysis indicated that 20% of the 3MHz transducers and 12.5% of the 1MHz contemplated the norms. In the pulsate mode, 12.7% presented relation rest/duration inside allowed limits. A great variation of the ultrasonic field was observed on the obtained images, which presented beams not centered, sometimes with bifurcation of its apex. The results allow concluding that, although used in therapeutic sessions with the population, none of the equipment presents all the analyzed variables inside technical norms.


Assuntos
Calibragem/normas , Análise de Falha de Equipamento , Modalidades de Fisioterapia/instrumentação , Ultrassonografia/instrumentação , Adulto , Desenho de Equipamento , Humanos , Inquéritos e Questionários , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...