Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; : 37028241252693, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725158

RESUMO

Detecting Clostridium in milk presents a significant challenge for the dairy industry given that traditional methods are time-consuming and not specific for these bacteria. Microbiological techniques are expensive and require qualified personnel. Clostridium, in the form of spores, can withstand pasteurization and revert to its vegetative form during cheese aging. These gas-producing bacteria are known for their production of carbon dioxide and hydrogen, causing the formation of slits, cracks, and irregular eyes in hard and semi-hard cheeses. However, gas analysis in the vial headspace of appropriate culture can be exploited to specifically detect Clostridium presence, since the closest competing bacterial Bacilli produces only carbon dioxide. The aim of this paper is to present a Raman-spectroscopy-based instrument for a rapid, inexpensive identification of Clostridium in milk with a limit of detection of 29 spores/L. The proposed measurement procedure is analog to that routinely used, based on the most probable number method. The Raman-based instrument speeds up the detection of a vial's positivity. A test conducted with Clostridium spores demonstrated its effectiveness in almost halving the time needed for the measurement campaign compared to the traditional method.

2.
Int J Microbiol ; 2009: 501362, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20148086

RESUMO

Staphylococcus aureus is a known major cause of foodborne illnesses, and milk and dairy products are often contaminated by enterotoxigenic strains of this bacterium. In the present study, 122 S. aureus isolates collected from different dairy products were characterised by phenotypic properties, by the distribution of genes encoding staphylococcal enterotoxins (sea, sec, sed, seg, seh, sei, sej, and sel) and by randomly amplified polymorphic DNA PCR (RAPD-PCR). Moreover, strain resistance to vancomycin and methicillin (oxacillin) was studied. The differences in the RAPD-PCR profiles obtained with the primers M13 and AP4 revealed the presence of a great genetic heterogeneity among the different S. aureus strains. Using the primer AP4 and M13, eight groups were distinguished by RAPD-PCR cluster analysis, although, except in few cases, it was not possible to correlate the isolates of different animal species (cow or ovine) with the presence of se genes. None of the isolates showed resistance to vancomycin or methicillin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...