Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(40): 29260-29270, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39285875

RESUMO

The emergence of multiferroic materials particularly bismuth iron oxide (BiFeO3) with distinctive magnetoelectric, and high energy storage capabilities, present pivotal aspects for next-generation memory storage devices. However, intrinsically weak magnetoelectric coupling limits their widespread applications, that can be leap over by the integration of BiFeO3 with enriched ferroelectric, and ferro/ferrimagnetic materials. Here, a series (1 - x)[0.7BiFeO3 + 0.3MnMoO4] + xNiFe2O4 (x = 0.00, 0.03, 0.06, and 0.09) is synthesized via citrate-gel based self-ignition, and solid-state reaction routes. Phase purity and crystallinity of tri-phase composites with surfaces revealing random and arbitrarily shaped grains are assured by X-ray diffraction, and field emission scanning electron microscopy, respectively. Dielectric studies illustrated non-linear trend for broad range of frequencies as predicted by Maxwell-Wagner theory along with single semicircle arcs in Nyquist plots that exposes grain boundaries effect. An enriched 68.42% of ferroelectric efficiency is featured for x = 0.06 substitutional contents, while magnetic computations demonstrated improved saturation magnetization (M s), remanence magnetization (M r), and coercive applied magnetic field (H c) values as 5.87 emu g-1, 0.96 emu g-1, and 215.19 Oe, respectively for x = 0.09 phase-fraction. The intriguing linear trends of magnetoelectric coupling for all the compositions are corroborating them propitious contenders for futuristic multistate devices.

2.
Materials (Basel) ; 15(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234231

RESUMO

Spinel ferrites are widely investigated for their widespread applications in high-frequency and energy storage devices. This work focuses on enhancing the magnetic and dielectric properties of Ni0.25Cu0.25Zn0.50 ferrite series through non-thermal microwave plasma exposure under low-pressure conditions. A series of Ni0.25Cu0.25Zn0.50 ferrites was produced using a facile sol-gel auto-ignition approach. The post-synthesis plasma treatment was given in a low-pressure chamber by sustaining oxygen plasma with a microwave source. The structural formation of control and plasma-modified ferrites was investigated through X-ray diffraction analysis, which confirmed the formation of the fcc cubical structure of all samples. The plasma treatment did not affect crystallize size but significantly altered the surface porosity. The surface porosity increased after plasma treatment and average crystallite size was measured as about ~49.13 nm. Morphological studies confirmed changes in surface morphology and reduction in particle size on plasma exposure. The saturation magnetization of plasma-exposed ferrites was roughly 65% higher than the control. The saturation magnetization, remnant magnetization, and coercivity of plasma-exposed ferrites were calculated as 74.46 emu/g, 26.35 emu/g, and 1040 Oe, respectively. Dielectric characteristics revealed a better response of plasma-exposed ferrites to electromagnetic waves than control. These findings suggest that the plasma-exposed ferrites are good candidates for constructing high-frequency devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...