RESUMO
Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.
Assuntos
Aspergilose , Aspergillus fumigatus , Sirtuínas , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimologia , Sirtuínas/genética , Sirtuínas/metabolismo , Virulência , Animais , Camundongos , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Acetilação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Mariposas/microbiologiaRESUMO
Protein acetylation is a crucial post-translational modification that controls gene expression and a variety of biological processes. Sirtuins, a prominent class of NAD + -dependent lysine deacetylases, serve as key regulators of protein acetylation and gene expression in eukaryotes. In this study, six single knockout strains of fungal pathogen Aspergillus fumigatus were constructed, in addition to a strain lacking all predicted sirtuins (SIRTKO). Phenotypic assays suggest that sirtuins are involved in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. AfsirE deletion resulted in attenuation of virulence, as demonstrated in murine and Galleria infection models. The absence of AfSirE leads to altered acetylation status of proteins, including histones and non-histones, resulting in significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.
RESUMO
Filamentous fungi are important cell factories for large-scale enzyme production. However, production levels are often low, and this limitation has stimulated research focusing on the manipulation of genes with predicted function in the protein secretory pathway. This pathway is the major route for the delivery of proteins to the cell exterior, and a positive relationship between the production of recombinant enzymes and the unfolded protein response (UPR) pathway has been observed. In this study, Aspergillus nidulans was exposed to UPR-inducing chemicals and differentially expressed genes were identified by RNA-seq. Twelve target genes were deleted in A. nidulans recombinant strains producing homologous and heterologous GH10 xylanases. The knockout of pbnA (glycosyltransferase), ydjA (Hsp40 co-chaperone), trxA (thioredoxin) and cypA (cyclophilin) improved the production of the homologous xylanase by 78, 171, 105 and 125% respectively. Interestingly, these deletions decreased the overall protein secretion, suggesting that the production of the homologous xylanase was specifically altered. However, the production of the heterologous xylanase and the secretion of total proteins were not altered by deleting the same genes. Considering the results, this approach demonstrated the possibility of rationally increase the production of a homologous enzyme, indicating that trxA, cypA, ydjA and pbnA are involved in protein production by A. nidulans.