Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Genetics ; 227(3)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38722894

RESUMO

UV light is a potent mutagen that induces bulky DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). Photodamage and other bulky lesions occurring in nuclear genomes can be repaired through nucleotide excision repair (NER), where incisions on both sides of a damaged site precede the removal of a single-stranded oligonucleotide containing the damage. Mitochondrial genomes (mtDNAs) are also susceptible to damage from UV light, but current evidence suggests that the only way to eliminate bulky mtDNA damage is through mtDNA degradation. Damage-containing oligonucleotides excised during NER can be captured with antidamage antibodies and sequenced (XR-seq) to produce high-resolution maps of active repair locations following UV exposure. We analyzed previously published datasets from Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster to identify reads originating from the mtDNA (and plastid genome in A. thaliana). In A. thaliana and S. cerevisiae, the mtDNA-mapping reads have unique length distributions compared to the nuclear-mapping reads. The dominant fragment size was 26 nt in S. cerevisiae and 28 nt in A. thaliana with distinct secondary peaks occurring in regular intervals. These reads also show a nonrandom distribution of di-pyrimidines (the substrate for CPD formation) with TT enrichment at positions 7-8 of the reads. Therefore, UV damage to mtDNA appears to result in production of DNA fragments of characteristic lengths and positions relative to the damaged location. The mechanisms producing these fragments are unclear, but we hypothesize that they result from a previously uncharacterized DNA degradation pathway or repair mechanism in mitochondria.


Assuntos
Arabidopsis , Dano ao DNA , Reparo do DNA , DNA Mitocondrial , Drosophila melanogaster , Saccharomyces cerevisiae , Raios Ultravioleta , DNA Mitocondrial/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Saccharomyces cerevisiae/metabolismo , Drosophila melanogaster/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Genoma Mitocondrial
2.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986892

RESUMO

UV light is a potent mutagen that induces bulky DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). In eukaryotic cells, photodamage and other bulky lesions occurring in nuclear genomes (nucDNAs) can be repaired through nucleotide excision repair (NER), where dual incisions on both sides of a damaged site precede the removal of a single-stranded oligonucleotide containing the damage. Mitochondrial genomes (mtDNAs) are also susceptible to damage from UV light, but current views hold that the only way to eliminate bulky DNA damage in mtDNAs is through mtDNA degradation. Damage-containing oligonucleotides excised during NER can be captured with anti-damage antibodies and sequenced (XR-seq) to produce high resolution maps of active repair locations following UV exposure. We analyzed previously published datasets from Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster to identify reads originating from the mtDNA (and plastid genome in A. thaliana). In A. thaliana and S. cerevisiae, the mtDNA-mapping reads have unique length distributions compared to the nuclear-mapping reads. The dominant fragment size was 26 nt in S. cerevisiae and 28 nt in A. thaliana with distinct secondary peaks occurring in 2-nt (S. cerevisiae) or 4-nt (A. thaliana) intervals. These reads also show a nonrandom distribution of di-pyrimidines (the substrate for CPD formation) with TT enrichment at positions 7-8 of the reads. Therefore, UV damage to mtDNA appears to result in production of DNA fragments of characteristic lengths and positions relative to the damaged location. We hypothesize that these fragments may reflect the outcome of a previously uncharacterized mechanism of NER-like repair in mitochondria or a programmed mtDNA degradation pathway.

3.
Genes Dev ; 37(13-14): 621-639, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541760

RESUMO

Punctuated bursts of structural genomic variations (SVs) have been described in various organisms, but their etiology remains incompletely understood. Homologous recombination (HR) is a template-guided mechanism of repair of DNA double-strand breaks and stalled or collapsed replication forks. We recently identified a DNA break amplification and genome rearrangement pathway originating from the endonucleolytic processing of a multi-invasion (MI) DNA joint molecule formed during HR. Genome-wide approaches confirmed that multi-invasion-induced rearrangement (MIR) frequently leads to several repeat-mediated SVs and aneuploidies. Using molecular and genetic analysis and a novel, highly sensitive proximity ligation-based assay for chromosomal rearrangement quantification, we further delineate two MIR subpathways. MIR1 is a universal pathway occurring in any sequence context, which generates secondary breaks and frequently leads to additional SVs. MIR2 occurs only if recombining donors exhibit substantial homology and results in sequence insertion without additional breaks or SVs. The most detrimental MIR1 pathway occurs late on a subset of persisting DNA joint molecules in a PCNA/Polδ-independent manner, unlike recombinational DNA synthesis. This work provides a refined mechanistic understanding of these HR-based SV formation pathways and shows that complex repeat-mediated SVs can occur without displacement DNA synthesis. Sequence signatures for inferring MIR1 from long-read data are proposed.


Assuntos
Instabilidade Genômica , Rearranjo Gênico , Recombinação Homóloga , Seleção Genética , DNA/genética , DNA/metabolismo , Cromossomos Fúngicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993162

RESUMO

Punctuated bursts of structural genomic variations (SVs) have been described in various organisms, but their etiology remains incompletely understood. Homologous recombination (HR) is a template-guided mechanism of repair of DNA double-strand breaks and stalled or collapsed replication forks. We recently identified a DNA break amplification and genome rearrangement pathway originating from the endonucleolytic processing of a multi-invasion (MI) DNA joint molecule formed during HR. Genome-wide sequencing approaches confirmed that multi-invasion-induced rearrangement (MIR) frequently leads to several repeat-mediated SVs and aneuploidies. Using molecular and genetic analysis, and a novel, highly sensitive proximity ligation-based assay for chromosomal rearrangement quantification, we further delineate two MIR sub-pathways. MIR1 is a universal pathway occurring in any sequence context, which generates secondary breaks and frequently leads to additional SVs. MIR2 occurs only if recombining donors exhibit substantial homology, and results in sequence insertion without additional break or SV. The most detrimental MIR1 pathway occurs late on a subset of persisting DNA joint molecules in a PCNA/Polδ-independent manner, unlike recombinational DNA synthesis. This work provides a refined mechanistic understanding of these HR-based SV formation pathways and shows that complex repeat-mediated SVs can occur without displacement DNA synthesis. Sequence signatures for inferring MIR1 from long-read data are proposed.

5.
Front Genet ; 13: 912851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783258

RESUMO

How microbial cells leverage their phenotypic potential to survive in a changing environment is a complex biological problem, with important implications for pathogenesis and species evolution. Stochastic phenotype switching, a particularly fascinating adaptive approach observed in numerous species across the tree of life, introduces phenotypic diversity into a population through mechanisms which have remained difficult to define. Here we describe our investigations into the mechanistic basis of colony morphology phenotype switching which occurs in populations of a pathogenic isolate of Saccharomyces cerevisiae, YJM311. We observed that clonal populations of YJM311 cells produce variant colonies that display altered morphologies and, using whole genome sequence analysis, discovered that these variant clones harbored an exceptional collection of karyotypes newly altered by de novo structural genomic variations (SVs). Overall, our analyses indicate that copy number alterations, more often than changes in allelic identity, provide the causative basis of this phenotypic variation. Individual variants carried between 1 and 16 de novo copy number variations, most of which were whole chromosomal aneuploidies. Notably, we found that the inherent stability of the diploid YJM311 genome is comparable to that of domesticated laboratory strains, indicating that the collections of SVs harbored by variant clones did not arise by a chronic chromosomal instability (CIN) mechanism. Rather, our data indicate that these variant clones acquired such complex karyotypic configurations simultaneously, during stochastic and transient episodes of punctuated systemic genomic instability (PSGI). Surprisingly, we found that the majority of these highly altered variant karyotypes were propagated with perfect fidelity in long-term passaging experiments, demonstrating that high aneuploidy burdens can often be conducive with prolonged genomic integrity. Together, our results demonstrate that colony morphology switching in YJM311 is driven by a stochastic process in which genome stability and plasticity are integrally coupled to phenotypic heterogeneity. Consequently, this system simultaneously introduces both phenotypic and genomic variation into a population of cells, which can, in turn perpetuate population diversity for many generations thereafter.

6.
Genetics ; 220(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34791219

RESUMO

The budding yeast Saccharomyces cerevisiae has been extensively characterized for many decades and is a crucial resource for the study of numerous facets of eukaryotic biology. Recent whole genome sequence analysis of over 1000 natural isolates of S. cerevisiae has provided critical insights into the evolutionary landscape of this species by revealing a population structure comprised of numerous genomically diverse lineages. These survey-level analyses have been largely devoid of structural genomic information, mainly because short-read sequencing is not suitable for detailed characterization of genomic architecture. Consequently, we still lack a complete perspective of the genomic variation that exists within this species. Single molecule long-read sequencing technologies, such as Oxford Nanopore and PacBio, provide sequencing-based approaches with which to rigorously define the structure of a genome, and have empowered yeast geneticists to explore this poorly described realm of eukaryotic genomics. Here, we present the comprehensive genomic structural analysis of a wild diploid isolate of S. cerevisiae, YJM311. We used long-read sequence analysis to construct a haplotype-phased, telomere-to-telomere length assembly of the YJM311 genome and characterized the structural variations (SVs) therein. We discovered that the genome of YJM311 contains significant intragenomic structural variation, some of which imparts notable consequences to the genomic stability and developmental biology of the strain. Collectively, we outline a new methodology for creating accurate haplotype-phased genome assemblies and highlight how such genomic analyses can be used to define the structural architectures of natural S. cerevisiae isolates. It is our hope that continued structural characterization of S. cerevisiae genomes, such as we have reported here for YJM311, will comprehensively advance our understanding of eukaryotic genome structure-function relationships, structural genomic diversity, and evolution.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae , Diploide , Genômica/métodos , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA/métodos
7.
Curr Genet ; 67(1): 57-63, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33159552

RESUMO

The rates and patterns by which cells acquire mutations profoundly shape their evolutionary trajectories and phenotypic potential. Conventional models maintain that mutations are acquired independently of one another over many successive generations. Yet, recent evidence suggests that cells can also experience mutagenic processes that drive rapid genome evolution. One such process manifests as punctuated bursts of genomic instability, in which multiple new mutations are acquired simultaneously during transient episodes of genomic instability. This mutational mode is reminiscent of the theory of punctuated equilibrium, proposed by Stephen Jay Gould and Niles Eldredge in 1972 to explain the burst-like appearance of new species in the fossil record. In this review, we survey the dominant and emerging theories of eukaryotic genome evolution with a particular focus on the growing body of work that substantiates the existence and importance of punctuated bursts of genomic instability. In addition, we summarize and discuss two recent studies from our own group, the results of which indicate that punctuated bursts systemic genomic instability (SGI) can rapidly reconfigure the structure of the diploid genome of Saccharomyces cerevisiae.


Assuntos
Evolução Biológica , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Instabilidade Genômica/genética
8.
Methods Mol Biol ; 2153: 201-219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840782

RESUMO

DNA break lesions pose a serious threat to the integrity of the genome. Eukaryotic cells can repair these lesions using the homologous recombination pathway that guides the repair reaction by using a homologous DNA template. The budding yeast Saccharomyces cerevisiae is an excellent model system with which to study this repair mechanism and the resulting patterns of genomic change resulting from it. In this chapter, we describe an approach that utilizes whole-genome sequencing data to support the analysis of tracts of loss-of-heterozygosity (LOH) that can arise from mitotic recombination in the context of the entire diploid yeast genome. The workflow and the discussion in this chapter are intended to enable classically trained molecular biologists and geneticists with limited experience in computational methods to conceptually understand and execute the steps of genome-wide LOH analysis as well as to adapt and apply them to their own specific studies and experimental models.


Assuntos
Cromossomos Fúngicos/genética , Biologia Computacional/métodos , Recombinação Genética , Saccharomyces cerevisiae/genética , Perda de Heterozigosidade , Mitose , Sequenciamento Completo do Genoma , Fluxo de Trabalho
10.
Proc Natl Acad Sci U S A ; 117(45): 28221-28231, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106418

RESUMO

Conventional models of genome evolution are centered around the principle that mutations form independently of each other and build up slowly over time. We characterized the occurrence of bursts of genome-wide loss-of-heterozygosity (LOH) in Saccharomyces cerevisiae, providing support for an additional nonindependent and faster mode of mutation accumulation. We initially characterized a yeast clone isolated for carrying an LOH event at a specific chromosome site, and surprisingly found that it also carried multiple unselected rearrangements elsewhere in its genome. Whole-genome analysis of over 100 additional clones selected for carrying primary LOH tracts revealed that they too contained unselected structural alterations more often than control clones obtained without any selection. We also measured the rates of coincident LOH at two different chromosomes and found that double LOH formed at rates 14- to 150-fold higher than expected if the two underlying single LOH events occurred independently of each other. These results were consistent across different strain backgrounds and in mutants incapable of entering meiosis. Our results indicate that a subset of mitotic cells within a population can experience discrete episodes of systemic genomic instability, when the entire genome becomes vulnerable and multiple chromosomal alterations can form over a narrow time window. They are reminiscent of early reports from the classic yeast genetics literature, as well as recent studies in humans, both in cancer and genomic disorder contexts. The experimental model we describe provides a system to further dissect the fundamental biological processes responsible for punctuated bursts of structural genomic variation.


Assuntos
Genoma Fúngico/genética , Instabilidade Genômica/genética , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/genética , Perda de Heterozigosidade/genética , Mutação/genética , Recombinação Genética/genética
11.
Genetics ; 216(1): 43-50, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32753390

RESUMO

Remarkably complex patterns of aneuploidy have been observed in the genomes of many eukaryotic cell types, ranging from brewing yeasts to tumor cells. Such aberrant karyotypes are generally thought to take shape progressively over many generations, but evidence also suggests that genomes may undergo faster modes of evolution. Here, we used diploid Saccharomyces cerevisiae cells to investigate the dynamics with which aneuploidies arise. We found that cells selected for the loss of a single chromosome often acquired additional unselected aneuploidies concomitantly. The degrees to which these genomes were altered fell along a spectrum, ranging from simple events affecting just a single chromosome, to systemic events involving many. The striking complexity of karyotypes arising from systemic events, combined with the high frequency at which we detected them, demonstrates that cells can rapidly achieve highly altered genomic configurations during temporally restricted episodes of genomic instability.


Assuntos
Aneuploidia , Genoma Fúngico , Instabilidade Genômica , Cromossomos Fúngicos/genética , Evolução Molecular , Cariótipo , Saccharomyces cerevisiae
12.
Sci Total Environ ; 715: 136944, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32014773

RESUMO

Produced water is the largest waste stream associated with oil and gas operations. This complex fluid contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In the United States, west of the 98th meridian, the federal National Pollutant Discharge Elimination System (NPDES) exemption allows release of produced water for agricultural beneficial reuse. The goal of this study was to quantify mutagenicity of a produced water NPDES release and discharge stream. We used four mutation assays in budding yeast cells that provide rate estimates for copy number variation (CNV) duplications and deletions, as well as forward and reversion point mutations. Higher mutation rates were observed at the discharge and decreased with distance downstream, which correlated with the concentrations of known carcinogens detected in the stream (e.g., benzene, radium), described in a companion study. Mutation rate increases were most prominent for CNV duplications and were higher than mutations observed in mixtures of known toxic compounds. Additionally, the samples were evaluated for acute toxicity in Daphnia magna and developmental toxicity in zebrafish. Acute toxicity was minimal, and no developmental toxicity was observed. This study illustrates that chemical analysis alone (McLaughlin et al., 2020) is insufficient for characterizing the risk of produced water NPDES releases and that a thorough evaluation of chronic toxicity is necessary to fully assess produced water for beneficial reuse.


Assuntos
Água/química , Animais , Variações do Número de Cópias de DNA , Daphnia , Gases , Mutagênicos , Óleos , Estados Unidos , Poluentes Químicos da Água
13.
Front Genet ; 10: 782, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572430

RESUMO

Abundant genomic heterozygosity can be found in wild strains of the budding yeast Saccharomyces cerevisiae isolated from industrial and clinical environments. The extent to which heterozygosity influences the phenotypes of these isolates is not fully understood. One such case is the PE-2/JAY270 strain, a natural hybrid widely adopted by sugarcane bioethanol distilleries for its ability to thrive under harsh biotic and abiotic stresses during industrial scale fermentation, however, it is not known whether or how the heterozygous configuration of the JAY270 genome contributes to its many desirable traits. In this study, we took a step toward exploring this question by conducting an initial functional characterization of JAY270's heteroalleles. We manipulated the abundance and distribution of heterozygous alleles through inbreeding and targeted uniparental disomy (UPD). Unique combinations of homozygous alleles in each inbred strain revealed wide phenotypic variation for at least two important industrial traits: Heat stress tolerance and competitive growth. Quantitative trait loci analyses allowed the identification of broad genomic regions where genetic polymorphisms potentially impacted these traits, and there was no overlap between the loci associated with each. In addition, we adapted an approach to induce bidirectional UPD of three targeted pairs of chromosomes (IV, XIV, and XV), while heterozygosity was maintained elsewhere in the genome. In most cases UPD led to detectable phenotypic alterations, often in opposite directions between the two homozygous haplotypes in each UPD pair. Our results showed that both widespread and regional homozygosity could uncover cryptic phenotypic variation supported by the heteroalleles residing in the JAY270 genome. Interestingly, we characterized multiple examples of inbred and UPD strains that displayed heat tolerance or competitive growth phenotypes that were superior to their heterozygous parent. However, we propose that homozygosity for those regions may be associated with a decrease in overall fitness in the complex and dynamic distillery environment, and that may have contributed to slowing down the erosion of heterozygosity from the JAY270 genome. This study also laid a foundation for approaches that can be expanded to the identification of specific alleles of interest for industrial applications in this and other hybrid yeast strains.

14.
Microb Cell ; 6(1): 1-64, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30652105

RESUMO

Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

15.
Genetics ; 210(4): 1227-1237, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30301740

RESUMO

Cells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA-damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA-damage tolerance pathway includes two subpathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence subpathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA-processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1 (Suppresses postrecruitment gene number 1), a chromatin-binding and transcription elongation factor, in DNA-damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA-damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological life span. We attribute these effects to an increased usage of the template switch branch of the DNA-damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild-type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.


Assuntos
Envelhecimento/genética , Instabilidade Genômica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética
16.
G3 (Bethesda) ; 8(11): 3703-3713, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30254181

RESUMO

The Saccharomyces cerevisiae strain JAY270/PE2 is a highly efficient biocatalyst used in the production of bioethanol from sugarcane feedstock. This strain is heterothallic and diploid, and its genome is characterized by abundant structural and nucleotide polymorphisms between homologous chromosomes. One of the reasons it is favored by many distilleries is that its cells do not normally aggregate, a trait that facilitates cell recycling during batch-fed fermentations. However, long-term propagation makes the yeast population vulnerable to the effects of genomic instability, which may trigger the appearance of undesirable phenotypes such as cellular aggregation. In pure cultures of JAY270, we identified the recurrent appearance of mutants displaying a mother-daughter cell separation defect resulting in rough colonies in agar media and fast sedimentation in liquid culture. We investigated the genetic basis of the colony morphology phenotype and found that JAY270 is heterozygous for a frameshift mutation in the ACE2 gene (ACE2/ace2-A7), which encodes a transcriptional regulator of mother-daughter cell separation. All spontaneous rough colony JAY270-derived isolates analyzed carried copy-neutral loss-of-heterozygosity (LOH) at the region of chromosome XII where ACE2 is located (ace2-A7/ace2-A7). We specifically measured LOH rates at the ACE2 locus, and at three additional chromosomal regions in JAY270 and in a conventional homozygous diploid laboratory strain. This direct comparison showed that LOH rates at all sites were quite similar between the two strain backgrounds. In this case study of genomic instability in an industrial strain, we showed that the JAY270 genome is dynamic and that structural changes to its chromosomes can lead to new phenotypes. However, our analysis also indicated that the inherent level of genomic instability in this industrial strain is normal relative to a laboratory strain. Our work provides an important frame of reference to contextualize the interpretation of instability processes observed in the complex genomes of industrial yeast strains.


Assuntos
Instabilidade Genômica , Saccharomyces cerevisiae/fisiologia , Microbiologia Industrial , Perda de Heterozigosidade , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética
17.
DNA Repair (Amst) ; 52: 110-114, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28268090

RESUMO

Cells carrying deletions of genes encoding H-class ribonucleases display elevated rates of chromosome instability. The role of these enzymes is to remove RNA-DNA associations including persistent mRNA-DNA hybrids (R-loops) formed during transcription, and ribonucleotides incorporated into DNA during replication. RNases H1 and H2 can degrade the RNA component of R-loops, but only RNase H2 can initiate accurate ribonucleotide excision repair (RER). In order to examine the specific contributions of these activities to chromosome stability, we measured rates of loss-of-heterozygosity (LOH) in diploid Saccharomyces cerevisiae yeast strains carrying the rnh201-RED separation-of-function allele, encoding a version of RNase H2 that is RER-defective, but partly retains its other activity. The LOH rate in rnh201-RED was intermediate between RNH201 and rnh201Δ. In strains carrying a mutant version of DNA polymerase ε (pol2-M644G) that incorporates more ribonucleotides than normal, the LOH rate in rnh201-RED was as high as the rate measured in rnh201Δ. Topoisomerase 1 cleavage at sites of ribonucleotide incorporation has been recently shown to produce DNA double strand breaks. Accordingly, in both the POL2 and pol2-M644G backgrounds, the LOH elevation in rnh201-RED was suppressed by top1Δ. In contrast, in strains that incorporate fewer ribonucleotides (pol2-M644L) the LOH rate in rnh201-RED was low and independent of topoisomerase 1. These results suggest that both R-loop removal and RER contribute substantially to chromosome stability, and that their relative contributions may be variable across different regions of the genome. In this scenario, a prominent contribution of R-loop removal may be expected at highly transcribed regions, whereas RER may play a greater role at hotspots of ribonucleotide incorporation.


Assuntos
Instabilidade Cromossômica , Reparo do DNA , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Ribonucleotídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/metabolismo , Perda de Heterozigosidade , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica
18.
Sci Rep ; 6: 38676, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000736

RESUMO

The development of biocatalysts capable of fermenting xylose, a five-carbon sugar abundant in lignocellulosic biomass, is a key step to achieve a viable production of second-generation ethanol. In this work, a robust industrial strain of Saccharomyces cerevisiae was modified by the addition of essential genes for pentose metabolism. Subsequently, taken through cycles of adaptive evolution with selection for optimal xylose utilization, strains could efficiently convert xylose to ethanol with a yield of about 0.46 g ethanol/g xylose. Though evolved independently, two strains carried shared mutations: amplification of the xylose isomerase gene and inactivation of ISU1, a gene encoding a scaffold protein involved in the assembly of iron-sulfur clusters. In addition, one of evolved strains carried a mutation in SSK2, a member of MAPKKK signaling pathway. In validation experiments, mutating ISU1 or SSK2 improved the ability to metabolize xylose of yeast cells without adaptive evolution, suggesting that these genes are key players in a regulatory network for xylose fermentation. Furthermore, addition of iron ion to the growth media improved xylose fermentation even by non-evolved cells. Our results provide promising new targets for metabolic engineering of C5-yeasts and point to iron as a potential new additive for improvement of second-generation ethanol production.


Assuntos
Engenharia Genética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Sequência de Bases , Diploide , Evolução Molecular , Fermentação/efeitos dos fármacos , Genoma Fúngico , Heterozigoto , Homozigoto , Ferro/farmacologia , Cariótipo , Engenharia Metabólica , Nucleotídeos/genética , Mutação Puntual/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformação Genética
19.
Environ Mol Mutagen ; 57(1): 3-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26247157

RESUMO

While gene copy number variations (CNVs) are abundant in the human genome, and often are associated with disease consequences, the mutagenic pathways and environmental exposures that cause these large structural mutations are understudied relative to conventional nucleotide substitutions in DNA. The members of the environmental mutagenesis community are currently seeking to remedy this deficiency, and there is a renewed interest in the development of mutagenicity assays to identify and characterize compounds that may induce de novo CNVs in humans. To achieve this goal, it is critically important to acknowledge that CNVs exist in two very distinct classes: nonrecurrent and recurrent CNVs. The goal of this commentary is to emphasize the deep contrasts that exist between the proposed pathways that lead to these two mutation classes. Nonrecurrent de novo CNVs originate primarily in mitotic cells through replication-dependent DNA repair pathways that involve microhomologies (<10 bp), and are detected at higher frequency in children of older fathers. In contrast, recurrent de novo CNVs are most often formed in meiotic cells through homologous recombination between nonallelic large low-copy repeats (>10,000 bp), without an associated paternal age effect. Given the biological differences between the two CNV classes, it is our belief that nonrecurrent and recurrent CN mutagens will probably differ substantially in their modes of action. Therefore, each CNV class may require their own uniquely designed assays, so that we as a field may succeed in uncovering the broadest possible spectrum of environmental CN mutagens.


Assuntos
Variações do Número de Cópias de DNA , Meio Ambiente , Interação Gene-Ambiente , Mutagênese , Mutagênicos/efeitos adversos , Fatores Etários , Animais , Quebra Cromossômica , Dano ao DNA , Testes Genéticos/métodos , Genômica/métodos , Humanos , Especificidade de Órgãos/genética
20.
Genetics ; 201(3): 951-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26400612

RESUMO

We show by whole genome sequence analysis that loss of RNase H2 activity increases loss of heterozygosity (LOH) in Saccharomyces cerevisiae diploid strains harboring the pol2-M644G allele encoding a mutant version of DNA polymerase ε that increases ribonucleotide incorporation. This led us to analyze the effects of loss of RNase H2 on LOH and on nonallelic homologous recombination (NAHR) in mutant diploid strains with deletions of genes encoding RNase H2 subunits (rnh201Δ, rnh202Δ, and rnh203Δ), topoisomerase 1 (TOP1Δ), and/or carrying mutant alleles of DNA polymerases ε, α, and δ. We observed an ∼7-fold elevation of the LOH rate in RNase H2 mutants encoding wild-type DNA polymerases. Strains carrying the pol2-M644G allele displayed a 7-fold elevation in the LOH rate, and synergistic 23-fold elevation in combination with rnh201Δ. In comparison, strains carrying the pol2-M644L mutation that decreases ribonucleotide incorporation displayed lower LOH rates. The LOH rate was not elevated in strains carrying the pol1-L868M or pol3-L612M alleles that result in increased incorporation of ribonucleotides during DNA synthesis by polymerases α and δ, respectively. A similar trend was observed in an NAHR assay, albeit with smaller phenotypic differentials. The ribonucleotide-mediated increases in the LOH and NAHR rates were strongly dependent on TOP1. These data add to recent reports on the asymmetric mutagenicity of ribonucleotides caused by topoisomerase 1 processing of ribonucleotides incorporated during DNA replication.


Assuntos
Rearranjo Gênico , Genes Fúngicos , Ribonucleotídeos/metabolismo , Saccharomyces cerevisiae/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/biossíntese , Instabilidade Genômica , Cariótipo , Perda de Heterozigosidade , Ribonucleases/genética , Ribonucleases/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...