Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell ; 142(6): 879-88, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20850010

RESUMO

Many biological motor molecules move within cells using stepsizes predictable from their structures. Myosin VI, however, has much larger and more broadly distributed stepsizes than those predicted from its short lever arms. We explain the discrepancy by monitoring Qdots and gold nanoparticles attached to the myosin-VI motor domains using high-sensitivity nanoimaging. The large stepsizes were attributed to an extended and relatively rigid lever arm; their variability to two stepsizes, one large (72 nm) and one small (44 nm). These results suggest that there exist two tilt angles during myosin-VI stepping, which correspond to the pre- and postpowerstroke states and regulate the leading head. The large steps are consistent with the previously reported hand-over-hand mechanism, while the small steps follow an inchworm-like mechanism and increase in frequency with ADP. Switching between these two mechanisms in a strain-sensitive, ADP-dependent manner allows myosin VI to fulfill its multiple cellular tasks including vesicle transport and membrane anchoring.


Assuntos
Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Actinas/metabolismo , Animais , Galinhas , Dimerização , Ouro , Humanos , Nanopartículas Metálicas , Microscopia , Microscopia de Fluorescência , Modelos Biológicos , Modelos Moleculares , Estrutura Terciária de Proteína , Pontos Quânticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...