Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 95: 104740, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536063

RESUMO

BACKGROUND: To resist the autoimmune attack characteristic of type 1 diabetes, insulin producing pancreatic ß cells need to evade T-cell recognition. Such escape mechanisms may be conferred by low HLA class I (HLA-I) expression and upregulation of immune inhibitory molecules such as Programmed cell Death Ligand 1 (PD-L1). METHODS: The expression of PD-L1, HLA-I and CXCL10 was evaluated in the human ß cell line, ECN90, and in primary human and mouse pancreatic islets. Most genes were determined by real-time RT-PCR, flow cytometry and Western blot. Activator and inhibitor of the AKT signaling were used to modulate PD-L1 induction. Key results were validated by monitoring activity of CD8+ Jurkat T cells presenting ß cell specific T-cell receptor and transduced with reporter genes in contact culture with the human ß cell line, ECN90. FINDINGS: In this study, we identify tryptophan (TRP) as an agonist of PD-L1 induction through the AKT signaling pathway. TRP also synergistically enhanced PD-L1 expression on ß cells exposed to interferon-γ. Conversely, interferon-γ-mediated induction of HLA-I and CXCL10 genes was down-regulated upon TRP treatment. Finally, TRP and its derivatives inhibited the activation of islet-reactive CD8+ T cells by ß cells. INTERPRETATION: Collectively, our findings indicate that TRP could induce immune tolerance to ß cells by promoting their immune evasion through HLA-I downregulation and PD-L1 upregulation. FUNDING: Dutch Diabetes Research Foundation, DON Foundation, the Laboratoire d'Excellence consortium Revive (ANR-10-LABX-0073), Agence Nationale de la Recherche (ANR-19-CE15-0014-01), Fondation pour la Recherche Médicale (EQ U201903007793-EQU20193007831), Innovative Medicines InitiativeINNODIA and INNODIA HARVEST, Aides aux Jeunes Diabetiques (AJD) and Juvenile Diabetes Research Foundation Ltd (JDRF).


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animais , Camundongos , Humanos , Triptofano , Interferon gama/metabolismo , Células Secretoras de Insulina/metabolismo , Evasão da Resposta Imune , Antígeno B7-H1 , Proteínas Proto-Oncogênicas c-akt
2.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166509, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914653

RESUMO

Type 2 diabetes is associated with an inflammatory phenotype in the pancreatic islets. We previously demonstrated that proinflammatory cytokines potently activate the tryptophan/kynurenine pathway (TKP) in INS-1 cells and in normal rat islets. Here we examined: (1) the TKP enzymes expression in the diabetic GK islets; (2) the TKP enzymes expression profiles in the GK islets before and after the onset of diabetes; (3) The glucose-stimulated insulin secretion (GSIS) in vitro in GK islets after KMO knockdown using specific morpholino-oligonucleotides against KMO or KMO blockade using the specific inhibitor Ro618048; (4) The glucose tolerance and GSIS after acute in vivo exposure to Ro618048 in GK rats. We report a remarkable induction of the kmo gene in GK islets and in human islets exposed to proinflammatory conditions. It occurred prominently in beta cells. The increased expression and activity of KMO reflected an acquired adaptation. Both KMO knockdown and specific inhibitor Ro618048 enhanced GSIS in vitro in GK islets. Moreover, acute administration of Ro618048 in vivo improved glucose tolerance, GSIS and basal blood glucose levels in GK rats. These results demonstrate that targeting islet TKP is able to correct defective GSIS. KMO inhibition could represent a potential therapeutic strategy for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Morfolinos , Ratos , Ratos Wistar , Triptofano/metabolismo
3.
J Biol Chem ; 298(7): 102096, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660019

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in the degradation of the low-density lipoprotein receptor. PCSK9 also targets proteins involved in lipid metabolism (very low-density lipoprotein receptor), immunity (major histocompatibility complex I), and viral infection (cluster of differentiation 81). Recent studies have also indicated that PCSK9 loss-of-function mutations are associated with an increased incidence of diabetes; however, the expression and function of PCSK9 in insulin-producing pancreatic beta cells remain unclear. Here, we studied PCSK9 regulation and function by performing loss- and gain-of-function experiments in the human beta cell line EndoC-ßH1. We demonstrate that PCSK9 is expressed and secreted by EndoC-ßH1 cells. We also found that PCSK9 expression is regulated by cholesterol and sterol regulatory element-binding protein transcription factors, as previously demonstrated in other cell types such as hepatocytes. Importantly, we show that PCSK9 knockdown using siRNA results in deregulation of various elements of the transcriptome, proteome, and secretome, and increases insulin secretion. We also observed that PCSK9 decreases low-density lipoprotein receptor and very low-density lipoprotein receptor levels via an extracellular signaling mechanism involving exogenous PCSK9, as well as levels of cluster of differentiation 36, a fatty acid transporter, through an intracellular signaling mechanism. Finally, we found that PCSK9 regulates the cell surface expression of PDL1 and HLA-ABC, proteins involved in cell-lymphocyte interaction, also via an intracellular mechanism. Collectively, these results highlight PCSK9 as a regulator of multiple cell surface receptors in pancreatic beta cells.


Assuntos
Células Secretoras de Insulina , Proteínas de Membrana , Pró-Proteína Convertase 9 , Antígenos CD36/metabolismo , Linhagem Celular , Mutação com Ganho de Função , Humanos , Células Secretoras de Insulina/metabolismo , Lipoproteínas VLDL/metabolismo , Mutação com Perda de Função , Proteínas de Membrana/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo
4.
Cell Death Dis ; 12(12): 1136, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876563

RESUMO

Glucocorticoids (GCs) are widely prescribed for their anti-inflammatory and immunosuppressive properties as a treatment for a variety of diseases. The use of GCs is associated with important side effects, including diabetogenic effects. However, the underlying mechanisms of GC-mediated diabetogenic effects in ß-cells are not well understood. In this study we investigated the role of glycogen synthase kinase 3 (GSK3) in the mediation of ß-cell death and dysfunction induced by GCs. Using genetic and pharmacological approaches we showed that GSK3 is involved in GC-induced ß-cell death and impaired insulin secretion. Further, we unraveled the underlying mechanisms of GC-GSK3 crosstalk. We showed that GSK3 is marginally implicated in the nuclear localization of GC receptor (GR) upon ligand binding. Furthermore, we showed that GSK3 regulates the expression of GR at mRNA and protein levels. Finally, we dissected the proper contribution of each GSK3 isoform and showed that GSK3ß isoform is sufficient to mediate the pro-apoptotic effects of GCs in ß-cells. Collectively, in this work we identified GSK3 as a viable target to mitigate GC deleterious effects in pancreatic ß-cells.


Assuntos
Glucocorticoides , Quinase 3 da Glicogênio Sintase , Apoptose , Morte Celular , Glucocorticoides/efeitos adversos , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta/genética
5.
Atherosclerosis ; 326: 47-55, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933263

RESUMO

BACKGROUND AND AIMS: Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) is an endogenous inhibitor of the LDL receptor (LDLR). Mendelian randomization studies suggest that PCSK9 deficiency increases diabetes risk, but the underlying mechanisms remain unknown. The aim of our study was to investigate whether PCSK9 or its inhibition may modulate beta cell function. METHODS: We assessed PCSK9 and insulin colocalization in human pancreatic sections by epifluorescent and confocal microscopy. We also investigated the expression and the function of PCSK9 in the human EndoC-ßH1 beta cell line, by ELISA and flow cytometry, respectively. PCSK9 was inhibited with Alirocumab or siRNA. LDLR expression and LDL uptake were assessed by flow cytometry. RESULTS: PCSK9 was expressed and secreted from beta cells isolated from human pancreas as well as from EndoC-ßH1 cells. PCSK9 secretion was enhanced by statin treatment. Recombinant PCSK9 decreased LDLR abundance at the surface of these cells, an effect abrogated by Alirocumab. Alirocumab as well as PCSK9 silencing increased LDLR expression at the surface of EndoC-ßH1 cells. Neither exogenous PCSK9, nor Alirocumab, nor PCSK9 silencing significantly altered glucose-stimulated insulin secretion (GSIS) from these cells. High-low density lipoproteins (LDL) concentrations decreased GSIS, but the addition of PCSK9 or its inhibition did not modulate this phenomenon. CONCLUSIONS: While PCSK9 regulates LDLR abundance in beta cells, inhibition of exogenous or endogenous PCSK9 does not appear to significantly impact insulin secretion. This is reassuring for the safety of PCSK9 inhibitors in terms of beta cell function.


Assuntos
Células Secretoras de Insulina , Pró-Proteína Convertase 9 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases , Receptores de LDL , Subtilisinas
6.
Nat Commun ; 11(1): 5982, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239617

RESUMO

Expanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass.


Assuntos
Envelhecimento/fisiologia , Proteínas de Sinalização Intercelular CCN/metabolismo , Células Secretoras de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Proteínas Proto-Oncogênicas/metabolismo , Envelhecimento/sangue , Animais , Proteínas de Sinalização Intercelular CCN/sangue , Proteínas de Sinalização Intercelular CCN/genética , Proliferação de Células , Células Cultivadas , Meios de Cultura/metabolismo , Diabetes Mellitus/terapia , Feminino , Humanos , Células Secretoras de Insulina/transplante , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células/métodos , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Desmame
7.
Sci Rep ; 10(1): 13469, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778664

RESUMO

G protein-coupled receptors are seven transmembrane signaling molecules that are involved in a wide variety of physiological processes. They constitute a large protein family of receptors with almost 300 members detected in human pancreatic islet preparations. However, the functional role of these receptors in pancreatic islets is unknown in most cases. We generated a new stable human beta cell line from neonatal pancreas. This cell line, named ECN90 expresses both subunits (GABBR1 and GABBR2) of the metabotropic GABAB receptor compared to human islet. In ECN90 cells, baclofen, a specific GABAB receptor agonist, inhibits cAMP signaling causing decreased expression of beta cell-specific genes such as MAFA and PCSK1, and reduced insulin secretion. We next demonstrated that in primary human islets, GABBR2 mRNA expression is strongly induced under cAMP signaling, while GABBR1 mRNA is constitutively expressed. We also found that induction and activation of the GABAB receptor in human islets modulates insulin secretion.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores de GABA-B/genética , Baclofeno/farmacologia , Linhagem Celular , Agonistas dos Receptores de GABA-B/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Pâncreas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de GABA-B/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
9.
Stem Cell Res Ther ; 11(1): 158, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303252

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) represent an interesting tool to improve pancreatic islet transplantation. They have immunomodulatory properties and secrete supportive proteins. However, the functional properties of MSCs vary according to many factors such as donor characteristics, tissue origin, or isolation methods. To counteract this heterogeneity, we aimed to immortalize and characterize adherent cells derived from human pancreatic islets (hISCs), using phenotypic, transcriptomic, and functional analysis. METHODS: Adherent cells derived from human islets in culture were infected with a hTERT retrovirus vector and then characterized by microarray hybridization, flow cytometry analysis, and immunofluorescence assays. Osteogenic, adipogenic, and chondrogenic differentiation as well as PBMC proliferation suppression assays were used to compare the functional abilities of hISCs and MSCs. Extracellular matrix (ECM) gene expression profile analysis was performed using the SAM (Significance Analysis of Microarrays) software, and protein expression was confirmed by western blotting. RESULTS: hISCs kept an unlimited proliferative potential. They exhibited several properties of MSCs such as CD73, CD90, and CD105 expression and differentiation capacity. From a functional point of view, hISCs inhibited the proliferation of activated peripheral blood mononuclear cells. The transcriptomic profile of hISCs highly clusterized with bone marrow (BM)-MSCs and revealed a differential enrichment of genes involved in the organization of the ECM. Indeed, the expression and secretion profiles of ECM proteins including collagens I, IV, and VI, fibronectin, and laminins, known to be expressed in abundance around and within the islets, were different between hISCs and BM-MSCs. CONCLUSION: We generated a new human cell line from pancreatic islets, with MSCs properties and retaining some pancreatic specificities related to the production of ECM proteins. hISCs appear as a very promising tool in islet transplantation by their availability (as a source of inexhaustible source of cells) and ability to secrete a supportive "pancreatic" microenvironment.


Assuntos
Ilhotas Pancreáticas , Células-Tronco Mesenquimais , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese , Humanos , Leucócitos Mononucleares
10.
Biochimie ; 170: 26-35, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31838129

RESUMO

Type 2 diabetes mellitus is a disease characterized by the formation of amyloid fibrillar deposits consisting mainly in human islet amyloid polypeptide (hIAPP), a peptide co-produced and co-secreted with insulin. hIAPP and insulin are synthesized by pancreatic ß cells initially as prehormones resulting after sequential cleavages in the mature peptides as well as the two flanking peptides (N- and C-terminal) and the C-peptide, respectively. It has been suggested that in the secretory granules, the kinetics of hIAPP fibril formation could be modulated by some internal factors. Indeed, insulin is known to be a potent inhibitor of hIAPP fibril formation and hIAPP-induced cell toxicity. Here we investigate whether the flanking peptides could regulate hIAPP fibril formation and toxicity by combining biophysical and biological approaches. Our data reveal that both flanking peptides are not amyloidogenic. In solution and in the presence of phospholipid membranes, they are not able to totally inhibit hIAPP-fibril formation neither hIAPP-membrane damage. In the presence of INS-1 cells, a rat pancreatic ß-cell line, the flanking peptides do not modulate hIAPP fibrillation neither hIAPP-induced cell death while in the presence of human islets, they have a slightly tendency to reduce hIAPP fibril formation but not its toxicity. These data demonstrate that the flanking peptides do not strongly contribute to reduce mature hIAPP amyloidogenesis in solution and in living cells, suggesting that other biochemical factors present in the cells must act on mature hIAPP fibril formation and hIAPP-induced cell death.


Assuntos
Amiloide/química , Morte Celular , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Neoplasias Pancreáticas/metabolismo , Vesículas Secretórias/metabolismo , Sequência de Aminoácidos , Agonistas dos Receptores da Amilina/farmacologia , Amiloide/efeitos dos fármacos , Animais , Células Cultivadas , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulinoma/tratamento farmacológico , Insulinoma/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Ratos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/patologia
11.
J Endocrinol ; 244(1): 133-148, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600727

RESUMO

Islet inflammation is associated with defective ß cell function and mass in type 2 diabetes (T2D). Glycogen synthase kinase 3 (GSK3) has been identified as an important regulator of inflammation in different diseased conditions. However, the role of GSK3 in islet inflammation in the context of diabetes remains unexplored. In this study, we investigated the direct implication of GSK3 in islet inflammation in vitro and tested the impact of GSK3 inhibition in vivo, on the reduction of islet inflammation, and the improvement of glucose metabolism in the Goto-Kakizaki (GK) rat, a spontaneous model of T2D. GK rats were chronically treated with infra-therapeutic doses of lithium, a widely used inhibitor of GSK3. We analyzed parameters of glucose homeostasis as well as islet inflammation and fibrosis in the endocrine pancreas. Ex vivo, we tested the impact of GSK3 inhibition on the autonomous inflammatory response of non-diabetic rat and human islets, exposed to a mix of pro-inflammatory cytokines to mimic an inflammatory environment. Treatment of young GK rats with lithium prevented the development of overt diabetes. Lithium treatment resulted in reduced expression of pro-inflammatory cytokines in the islets. It decreased islet fibrosis and partially restored the glucose-induced insulin secretion in GK rats. Studies in non-diabetic human and rat islets exposed to inflammatory environment revealed the direct implication of GSK3 in the islet autonomous inflammatory response. We show for the first time, the implication of GSK3 in islet inflammation and suggest this enzyme as a viable target to treat diabetes-associated inflammation.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Modelos Animais de Doenças , Fibrose , Glucose/metabolismo , Humanos , Inflamação , Secreção de Insulina , Masculino , Ratos , Ratos Wistar
12.
Cell Metab ; 28(6): 946-960.e6, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30078552

RESUMO

Although CD8+ T-cell-mediated autoimmune ß cell destruction occurs in type 1 diabetes (T1D), the target epitopes processed and presented by ß cells are unknown. To identify them, we combined peptidomics and transcriptomics strategies. Inflammatory cytokines increased peptide presentation in vitro, paralleling upregulation of human leukocyte antigen (HLA) class I expression. Peptide sources featured several insulin granule proteins and all known ß cell antigens, barring islet-specific glucose-6-phosphatase catalytic subunit-related protein. Preproinsulin yielded HLA-A2-restricted epitopes previously described. Secretogranin V and its mRNA splice isoform SCG5-009, proconvertase-2, urocortin-3, the insulin gene enhancer protein ISL-1, and an islet amyloid polypeptide transpeptidation product emerged as antigens processed into HLA-A2-restricted epitopes, which, as those already described, were recognized by circulating naive CD8+ T cells in T1D and healthy donors and by pancreas-infiltrating cells in T1D donors. This peptidome opens new avenues to understand antigen processing by ß cells and for the development of T cell biomarkers and tolerogenic vaccination strategies.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Epitopos de Linfócito T/imunologia , Transcriptoma/imunologia , Animais , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Hormônio Liberador da Corticotropina/metabolismo , Citocinas/metabolismo , Antígenos HLA/metabolismo , Humanos , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Camundongos , Proteína Secretora Neuroendócrina 7B2/metabolismo , Pró-Proteína Convertase 2/metabolismo , Precursores de Proteínas/metabolismo , Proteômica/métodos , Urocortinas/metabolismo
13.
Mol Metab ; 10: 74-86, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29472102

RESUMO

OBJECTIVE: Dedifferentiation could explain reduced functional pancreatic ß-cell mass in type 2 diabetes (T2D). METHODS: Here we model human ß-cell dedifferentiation using growth factor stimulation in the human ß-cell line, EndoC-ßH1, and human pancreatic islets. RESULTS: Fibroblast growth factor 2 (FGF2) treatment reduced expression of ß-cell markers, (INS, MAFB, SLC2A2, SLC30A8, and GCK) and activated ectopic expression of MYC, HES1, SOX9, and NEUROG3. FGF2-induced dedifferentiation was time- and dose-dependent and reversible upon wash-out. Furthermore, FGF2 treatment induced expression of TNFRSF11B, a decoy receptor for RANKL and protected ß-cells against RANKL signaling. Finally, analyses of transcriptomic data revealed increased FGF2 expression in ductal, endothelial, and stellate cells in pancreas from T2D patients, whereas FGFR1, SOX,9 and HES1 expression increased in islets from T2D patients. CONCLUSIONS: We thus developed an FGF2-induced model of human ß-cell dedifferentiation, identified new markers of dedifferentiation, and found evidence for increased pancreatic FGF2, FGFR1, and ß-cell dedifferentiation in T2D.


Assuntos
Desdiferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/citologia , Células Cultivadas , Diabetes Mellitus Tipo 2/patologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
14.
Diabetes ; 67(3): 461-472, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282201

RESUMO

Although the mechanisms by which glucose regulates insulin secretion from pancreatic ß-cells are now well described, the way glucose modulates gene expression in such cells needs more understanding. Here, we demonstrate that MondoA, but not its paralog carbohydrate-responsive element-binding protein, is the predominant glucose-responsive transcription factor in human pancreatic ß-EndoC-ßH1 cells and in human islets. In high-glucose conditions, MondoA shuttles to the nucleus where it is required for the induction of the glucose-responsive genes arrestin domain-containing protein 4 (ARRDC4) and thioredoxin interacting protein (TXNIP), the latter being a protein strongly linked to ß-cell dysfunction and diabetes. Importantly, increasing cAMP signaling in human ß-cells, using forskolin or the glucagon-like peptide 1 mimetic Exendin-4, inhibits the shuttling of MondoA and potently inhibits TXNIP and ARRDC4 expression. Furthermore, we demonstrate that silencing MondoA expression improves glucose uptake in EndoC-ßH1 cells. These results highlight MondoA as a novel target in ß-cells that coordinates transcriptional response to elevated glucose levels.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistemas do Segundo Mensageiro , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Exenatida , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Incretinas/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Peptídeos/farmacologia , Interferência de RNA , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Técnicas de Cultura de Tecidos , Peçonhas/farmacologia
15.
Sci Rep ; 6: 25765, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27166427

RESUMO

Acute or chronic metabolic complications such as diabetic ketoacidosis are often associated with extracellular acidification and pancreatic ß-cell dysfunction. However, the mechanisms by which human ß-cells sense and respond to acidic pH remain elusive. In this study, using the recently developed human ß-cell line EndoC-ßH2, we demonstrate that ß-cells respond to extracellular acidification through GPR68, which is the predominant proton sensing receptor of human ß-cells. Using gain- and loss-of-function studies, we provide evidence that the ß-cell enriched transcription factor RFX6 is a major regulator of GPR68. Further, we show that acidic pH stimulates the production and secretion of the chemokine IL-8 by ß-cells through NF-кB activation. Blocking of GPR68 or NF-кB activity severely attenuated acidification induced IL-8 production. Thus, we provide mechanistic insights into GPR68 mediated ß-cell response to acidic microenvironment, which could be a new target to protect ß-cell against acidosis induced inflammation.


Assuntos
Ácidos/metabolismo , Espaço Extracelular/química , Células Secretoras de Insulina/metabolismo , Interleucina-8/biossíntese , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular , AMP Cíclico/biossíntese , Humanos , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/metabolismo , Fosfatos de Inositol/metabolismo , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Prótons , Fatores de Transcrição de Fator Regulador X/metabolismo
16.
FASEB J ; 30(2): 748-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26534832

RESUMO

The major feature of the human pancreatic islet architecture is the organization of endocrine cells into clusters comprising central ß cells and peripheral α cells surrounded by vasculature. To have an insight into the mechanisms that govern this unique islet architecture, islet cells were isolated, and reaggregation of α and ß cells into islet-like structures (pseudoislets) after culture or transplantation into mice was studied by immunohistology. The pseudoislets formed in culture displayed an unusual cell arrangement, contrasting with the transplanted pseudoislets, which exhibited a cell arrangement similar to that observed in native pancreatic islet subunits. The pattern of revascularization and the distribution of extracellular matrix around transplanted pseudoislets were alike to those observed in native pancreatic islets. This organization of transplanted pseudoislets occurred also when revascularization was abolished by treating mice with an anti-VEGF antibody, but not when contact with extracellular matrix was prevented by encapsulation of pseudoislets within alginate hydrogel. These results indicate that the maintenance of islet cell arrangement is dependent on in vivo features such as extracellular matrix but independent of vascularization.


Assuntos
Matriz Extracelular/patologia , Células Secretoras de Glucagon/patologia , Células Secretoras de Insulina/patologia , Transplante das Ilhotas Pancreáticas , Animais , Matriz Extracelular/metabolismo , Células Secretoras de Glucagon/metabolismo , Xenoenxertos , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos SCID
18.
PLoS One ; 9(3): e92066, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642635

RESUMO

The ubiquitin/proteasome system (UPS), a major cellular protein degradation machinery, plays key roles in the regulation of many cell functions. Glucotoxicity mediated by chronic hyperglycaemia is detrimental to the function and survival of pancreatic beta cells. The aim of our study was to determine whether proteasome dysfunction could be involved in beta cell apoptosis in glucotoxic conditions, and to evaluate whether such a dysfunction might be pharmacologically corrected. Therefore, UPS activity was measured in GK rats islets, INS-1E beta cells or human islets after high glucose and/or UPS inhibitor exposure. Immunoblotting was used to quantify polyubiquitinated proteins, endoplasmic reticulum (ER) stress through CHOP expression, and apoptosis through the cleavage of PARP and caspase-3, whereas total cell death was detected through histone-associated DNA fragments measurement. In vitro, we found that chronic exposure of INS-1E cells to high glucose concentrations significantly decreases the three proteasome activities by 20% and leads to caspase-3-dependent apoptosis. We showed that pharmacological blockade of UPS activity by 20% leads to apoptosis in a same way. Indeed, ER stress was involved in both conditions. These results were confirmed in human islets, and proteasome activities were also decreased in hyperglycemic GK rats islets. Moreover, we observed that a high glucose treatment hypersensitized beta cells to the apoptotic effect of proteasome inhibitors. Noteworthily, the decreased proteasome activity can be corrected with Exendin-4, which also protected against glucotoxicity-induced apoptosis. Taken together, our findings reveal an important role of proteasome activity in high glucose-induced beta cell apoptosis, potentially linking ER stress and glucotoxicity. These proteasome dysfunctions can be reversed by a GLP-1 analog. Thus, UPS may be a potent target to treat deleterious metabolic conditions leading to type 2 diabetes.


Assuntos
Apoptose/genética , Glucose/farmacologia , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Exenatida , Expressão Gênica , Glucose/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/patologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Masculino , Peptídeos/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Ratos , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Peçonhas/farmacologia
19.
Diabetes ; 62(4): 1206-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23274887

RESUMO

Adult ß-cell dysfunction, a hallmark of type 2 diabetes, can be programmed by adverse fetal environment. We have shown that fetal glucocorticoids (GCs) participate in this programming through inhibition of ß-cell development. Here we have investigated the molecular mechanisms underlying this regulation. We showed that GCs stimulate the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a coregulator of the GCs receptor (GR), and that the overexpression of PGC-1α represses genes important for ß-cell development and function. More precisely, PGC-1α inhibited the expression of the key ß-cell transcription factor pancreatic duodenal homeobox 1 (Pdx1). This repression required the GR and was mediated through binding of a GR/PGC-1α complex to the Pdx1 promoter. To explore PGC-1α function, we generated mice with inducible ß-cell PGC-1α overexpression. Mice overexpressing PGC-1α exhibited at adult age impaired glucose tolerance associated with reduced insulin secretion, decreased ß-cell mass, and ß-cell hypotrophy. Interestingly, PGC-1α expression in fetal life only was sufficient to impair adult ß-cell function whereas ß-cell PGC-1α overexpression from adult age had no consequence on ß-cell function. Altogether, our results demonstrate that the GR and PGC-1α participate in the fetal programming of adult ß-cell function through inhibition of Pdx1 expression.


Assuntos
Células Secretoras de Insulina/metabolismo , Transativadores/metabolismo , Animais , Glicemia , Células Cultivadas , Feminino , Privação de Alimentos , Regulação da Expressão Gênica/fisiologia , Glucose/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/metabolismo , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Fatores de Transcrição
20.
J Clin Invest ; 121(9): 3589-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21865645

RESUMO

Despite intense efforts over the past 30 years, human pancreatic ß cell lines have not been available. Here, we describe a robust technology for producing a functional human ß cell line using targeted oncogenesis in human fetal tissue. Human fetal pancreatic buds were transduced with a lentiviral vector that expressed SV40LT under the control of the insulin promoter. The transduced buds were then grafted into SCID mice so that they could develop into mature pancreatic tissue. Upon differentiation, the newly formed SV40LT-expressing ß cells proliferated and formed insulinomas. The resulting ß cells were then transduced with human telomerase reverse transcriptase (hTERT), grafted into other SCID mice, and finally expanded in vitro to generate cell lines. One of these cell lines, EndoC-ßH1, expressed many ß cell-specific markers without any substantial expression of markers of other pancreatic cell types. The cells secreted insulin when stimulated by glucose or other insulin secretagogues, and cell transplantation reversed chemically induced diabetes in mice. These cells represent a unique tool for large-scale drug discovery and provide a preclinical model for cell replacement therapy in diabetes. This technology could be generalized to generate other human cell lines when the cell type-specific promoter is available.


Assuntos
Linhagem Celular , Glucose/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Feto/anatomia & histologia , Perfilação da Expressão Gênica , Engenharia Genética , Humanos , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Insulinoma/metabolismo , Masculino , Camundongos , Camundongos SCID , Pâncreas/citologia , Pâncreas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA