Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 477: 135340, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096642

RESUMO

Over the past two decades, the rise in coal worker's pneumoconiosis has prompted research into the effects of respirable coal dust components. This study explores how coal-pyrites produce hydroxyl radicals (•OH), a reactive oxygen species closely associated with particle toxicity, and assesses the ability of safe chemical additives to reduce •OH production at various pH levels. Promising candidates were evaluated in various solutions, including tap and process waters and simulated lung fluid. We employed electrokinetic measurements, infrared and X-ray photoelectron spectroscopies, and ab initio atomistic simulations to analyze particle surfaces. The study also looked at how surface aging affects •OH production. Our results show that •OH generation of the pyrite varies and is catalyzed by elements like silicon, aluminum, and iron in pyrite. Carboxymethyl cellulose was effective in reducing •OH production by targeting surface sulfide and silicon sites and affecting surface hydration and charge. Atmospheric aging was found to increase •OH production, especially in the pyrite with high iron and silicon and low calcium contents, relative to other samples. This highlights the role of the pyrite surface properties and chemical composition, and the solution pH and composition in •OH generation by coal-pyrites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...