Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1394114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873610

RESUMO

Introduction: Several effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and implemented in the population. However, the current production capacity falls short of meeting global demand. Therefore, it is crucial to further develop novel vaccine platforms that can bridge the distribution gap. AVX/COVID-12 is a vector-based vaccine that utilizes the Newcastle Disease virus (NDV) to present the SARS-CoV-2 spike protein to the immune system. Methods: This study aims to analyze the antigenicity of the vaccine candidate by examining antibody binding and T-cell activation in individuals infected with SARS-CoV-2 or variants of concern (VOCs), as well as in healthy volunteers who received coronavirus disease 2019 (COVID-19) vaccinations. Results: Our findings indicate that the vaccine effectively binds antibodies and activates T-cells in individuals who received 2 or 3 doses of BNT162b2 or AZ/ChAdOx-1-S vaccines. Furthermore, the stimulation of T-cells from patients and vaccine recipients with AVX/COVID-12 resulted in their proliferation and secretion of interferon-gamma (IFN-γ) in both CD4+ and CD8+ T-cells. Discussion: The AVX/COVID-12 vectored vaccine candidate demonstrates the ability to stimulate robust cellular responses and is recognized by antibodies primed by the spike protein present in SARS-CoV-2 viruses that infected patients, as well as in the mRNA BNT162b2 and AZ/ChAdOx-1-S vaccines. These results support the inclusion of the AVX/COVID-12 vaccine as a booster in vaccination programs aimed at addressing COVID-19 caused by SARS-CoV-2 and its VOCs.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Ativação Linfocitária , Vírus da Doença de Newcastle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Vírus da Doença de Newcastle/imunologia , Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Ativação Linfocitária/imunologia , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Vacina BNT162/imunologia , Vacinação , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo
2.
Clin Transl Sci ; 16(12): 2687-2699, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873554

RESUMO

The difficulty in predicting fatal outcomes in patients with coronavirus disease 2019 (COVID-19) impacts the general morbidity and mortality due to severe acute respiratory syndrome-coronavirus 2 infection, as it wears out the hospital services that care for these patients. Unfortunately, in several of the candidates for prognostic biomarkers proposed, the predictive power is compromised when patients have pre-existing comorbidities. A cohort of 147 patients hospitalized for severe COVID-19 was included in a descriptive, observational, single-center, and prospective study. Patients were recruited during the first COVID-19 pandemic wave (April-November 2020). Data were collected from the clinical history whereas immunophenotyping by multiparameter flow cytometry analysis allowed us to assess the expression of surface markers on peripheral leucocyte. Patients were grouped according to the outcome in survivors or non-survivors. The prognostic value of leucocyte, cytokines or HLA-DR, CD39, and CD73 was calculated. Hypertension and chronic renal failure but not obesity and diabetes were conditions more frequent among the deceased patient group. Mixed hypercytokinemia, including inflammatory (IL-6) and anti-inflammatory (IL-10) cytokines, was more evident in deceased patients. In the deceased patient group, lymphopenia with a higher neutrophil-lymphocyte ratio (NLR) value was present. HLA-DR expression and the percentage of CD39+ cells were higher than non-COVID-19 patients but remained similar despite the outcome. Receiver operating characteristic analysis and cutoff value of NLR (69.6%, 9.4), percentage NLR (pNLR; 71.1%, 13.6), and IL-6 (79.7%, 135.2 pg/mL). The expression of HLA-DR, CD39, and CD73, as many serum cytokines (other than IL-6) and chemokines levels do not show prognostic potential, were compared to NLR and pNLR values.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , Estudos Prospectivos , Interleucina-6 , Pandemias , Prognóstico , Biomarcadores , Neutrófilos , Antígenos HLA-DR , Estudos Retrospectivos
3.
J Cardiovasc Dev Dis ; 9(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36286282

RESUMO

The differential contribution of monocyte subsets expressing the C-C chemokine receptor 2 (CCR2) to subclinical atherosclerosis in girls and boys is unclear. In this pilot study, we compared classical, intermediate, and nonclassical monocyte subsets expressing CCR2 in 33 obese children of both sexes aged 8 to 16 divided by carotid intima-media thickness (IMT), considering values above the 75th percentile (p75) as abnormally high IMT. Obesity was defined as body mass index above the 95th percentile according to age and sex. Flow cytometry analyses revealed that boys but not girls with IMT ≥ p75 displayed increased CCR2+ cell percentage and CCR2 expression in the three monocyte subsets, compared to boys with IMT < p75. The CCR2+ cell percentage and CCR2 expression in the three monocyte subsets significantly correlated with increased IMT and insulin resistance in boys but not girls, where the CCR2+ nonclassical monocyte percentage had the strongest associations (r = 0.73 and r = 0.72, respectively). The role of CCR2+ monocyte subpopulations in identifying an abnormally high IMT shows a marked sexual dimorphism, where boys seem to be at higher subclinical atherosclerosis risk than girls.

4.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638556

RESUMO

Cellular senescence is more than a proliferative arrest in response to various stimuli. Senescent cells (SC) participate in several physiological processes, and their adequate removal is essential to maintain tissue and organism homeostasis. However, SC accumulation in aging and age-related diseases alters the tissue microenvironment leading to deterioration. The immune system clears the SC, but the specific scenarios and mechanisms related to recognizing and eliminating them are unknown. Hence, we aimed to evaluate the existence of three regulatory signals of phagocytic function, CD47, major histocompatibility complex class I (MHC-I), and calreticulin, present in the membrane of SC. Therefore, primary fibroblasts were isolated from CD1 female mice lungs, and stress-induced premature senescence (SIPS) was induced with hydrogen peroxide. Replicative senescence (RS) was used as a second senescent model. Our results revealed a considerable increment of CD47 and MHC-I in RS and SIPS fibroblasts. At the same time, no significant changes were found in calreticulin, suggesting that those signals might be associated with evading immune system recognition and thus averting senescent cells clearance.


Assuntos
Antígenos CD1/metabolismo , Antígeno CD47/metabolismo , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Pulmão/metabolismo , Animais , Calbindina 2/metabolismo , Senescência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Fibroblastos/citologia , Peróxido de Hidrogênio/toxicidade , Camundongos , Cultura Primária de Células
5.
Comput Methods Programs Biomed ; 210: 106366, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34500141

RESUMO

BACKGROUND AND OBJECTIVES: Sepsis is a severe infection that increases mortality risk and is one if the main causes of death in intensive care units. Accurate detection is key to successful interventions, but diagnosis of sepsis is complicated because the initial signs and symptoms are not specific. Biomarkers that have been proposed have low specificity and sensitivity, are expensive, and not available in every hospital. In this study, we propose the use of artificial intelligence in the form of a neural network to diagnose sepsis using only common laboratory tests and vital signs that are routine and widely available. METHODS: A retrospective, cross sectional cohort of 113 patients from an intensive care unit, each with 48 routinely evaluated vital signs and biochemical parameters was used to train, validate and test a neural network with 48 inputs, 10 neurons in a single hidden layer and one output. The sensitivity and specificity of the neural network as a point sampled diagnostic test was calculated. RESULTS: All but one case were correctly diagnosed by the neural network, with 91% sensitivity and 100% specificity in the validation data set, and 100% sensitivity and specificity in the test data set. CONCLUSIONS: The designed neural network system can identify patients with sepsis, with minimal resources using standard laboratory tests widely available in most health care facilities. This should reduce the burden on the medical staff of a difficult diagnosis and should improve outcomes for patients with sepsis.


Assuntos
Inteligência Artificial , Sepse , Estudos Transversais , Humanos , Unidades de Terapia Intensiva , Redes Neurais de Computação , Projetos Piloto , Estudos Retrospectivos , Sepse/diagnóstico
6.
J Immunol Res ; 2016: 4097642, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27847830

RESUMO

Reconstitution of the hematopoietic system during immune responses and immunological and neoplastic diseases or upon transplantation depends on the emergent differentiation of hematopoietic stem/progenitor cells within the bone marrow. Although in the last decade the use of dialyzable leukocyte extracts (DLE) as supportive therapy in both infectious and malignant settings has increased, its activity on the earliest stages of human hematopoietic development remains poorly understood. Here, we have examined the ability of DLE to promote replenishment of functional lymphoid lineages from CD34+ cells. Our findings suggest that DLE increases their differentiation toward a conspicuous CD56+CD16+CD11c+ NK-like cell population endowed with properties such as IFNy production, tumor cell cytotoxicity, and the capability of inducing γδ T lymphocyte proliferation. Of note, long-term coculture controlled systems showed the bystander effect of DLE-stromal cells by providing NK progenitors with signals to overproduce this cell subset. Thus, by direct effect on progenitor cells and through activation and remodeling of the supporting hematopoietic microenvironment, DLE may contribute a robust innate immune response by promoting the emerging lymphopoiesis of functional CD11c+ NK cells in a partially TLR-related manner. Unraveling the identity and mechanisms of the involved DLE components may be fundamental to advance the NK cell-based therapy field.


Assuntos
Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Linfopoese , Subpopulações de Linfócitos T/imunologia , Fator de Transferência/farmacologia , Antígeno CD11c/análise , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Hematopoéticas/fisiologia , Humanos , Imunofenotipagem , Interferon gama/biossíntese , Células Matadoras Naturais/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta , Células Estromais/fisiologia , Subpopulações de Linfócitos T/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-25057275

RESUMO

Electrical vagus nerve (VN) stimulation during sepsis attenuates tumor necrosis factor (TNF) production through the cholinergic anti-inflammatory pathway, which depends on the integrity of the VN and catecholamine production. To characterize the effect of electroacupuncture at ST36 (EA-ST36) on serum TNF, IL-6, nitrite, and HMGB1 levels and survival rates, based on VN integrity and catecholamine production, a sepsis model was induced in rats using cecal ligation and puncture (CLP). The septic rats were subsequently treated with EA-ST36 (CLP+ST36), and serum samples were collected and analyzed for cytokines levels. The serum TNF, IL-6, nitrite, and HMGB1 levels in the CLP+ST36 group were significantly lower compared with the group without treatment, the survival rates were significantly higher (P < 0.05), and the acute organ injury induced by CLP was mitigated by EA-ST36; however, when subdiaphragmatic vagotomy was performed, the serum levels of TNF in the CLP+ST36 group did not show a significant difference compared with the group without electrostimulation, and, similarly, no significant difference in serum TNF levels was found under the pharmacological blockade of catecholamines. These results suggest that in rats with CLP sepsis models EA-ST36 reduces serum TNF levels through VN- and atecholamine-dependent mechanisms.

8.
Nat Med ; 20(3): 291-5, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562381

RESUMO

Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings. Neuronal networks represent physiological mechanisms, selected by evolution to control inflammation, that can be exploited for the treatment of inflammatory and infectious disorders. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing vagal activation of aromatic L-amino acid decarboxylase, leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized mice mimic clinical adrenal insufficiency, increase the susceptibility to sepsis and prevent the anti-inflammatory effects of electroacupuncture. Dopamine inhibits cytokine production via dopamine type 1 (D1) receptors. D1 receptor agonists suppress systemic inflammation and rescue mice with adrenal insufficiency from polymicrobial peritonitis. Our results suggest a new anti-inflammatory mechanism mediated by the sciatic and vagus nerves that modulates the production of catecholamines in the adrenal glands. From a pharmacological perspective, the effects of selective dopamine agonists mimic the anti-inflammatory effects of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders.


Assuntos
Dopamina/metabolismo , Eletroacupuntura/métodos , Sepse/terapia , Nervo Vago/imunologia , Glândulas Suprarrenais/metabolismo , Animais , Catecolaminas/metabolismo , Citocinas/metabolismo , Dopa Descarboxilase/metabolismo , Inflamação , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Peritonite/metabolismo , Receptores de Dopamina D1/metabolismo , Nervo Isquiático/patologia , Sepse/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...