Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 1): 130844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484809

RESUMO

CHT7 is a regulator of quiescence repression in Chlamydomonas reinhardtii. Initially, CHT7's repression activity was thought to be managed by its DNA-binding CXC domain. Later, it was found that the CHT7-CXC domain is dispensable for CHT7's activities. Rather, CHT7's predicted protein domains were proposed to be involved in regulation activities by binding to other repressors in the cell. Yet, it remains unclear why and how CHT7 refrains its CXC domain from participating in any transcriptional activities. The question becomes more intriguing, since CXC binding regions are available in promoter regions of some of the misregulated genes in CHT7 mutant (cht7). Through biophysical experiments and molecular dynamics approaches, we studied the DNA recognition behavior of CHT7-CXC. The results indicate that this domain possesses sequence selectivity due to the differential binding abilities of its subdomains. Further, to understand if the case is that CXC loses its DNA binding capabilities in the vicinity of other repressors, we examined CHT7-CXC's DNA binding stability under the spatial constraint conditions created through fusing CHT7-CXC with AsLOV2. The results show limited ability of CHT7-CXC to withstand steric forces and provide insights to why and how algal cells may hold back CHT7-CXC's indulgence in quiescence repression. CLASSIFICATIONS: Biological Sciences, Biophysics and Computational Biology.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Triglicerídeos , Hidrólise , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , DNA , Transcrição Gênica
2.
Biophys J ; 122(24): 4670-4685, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37978801

RESUMO

The C-terminal Jα-helix of the Avena sativa's Light Oxygen and Voltage (AsLOV2) protein, unfolds on exposure to blue light. This characteristic seeks relevance in applications related to engineering novel biological photoswitches. Using molecular dynamics simulations and the Markov state modeling (MSM) approach we provide the mechanism that explains the stepwise unfolding of the Jα-helix. The unfolding was resolved into seven steps represented by the structurally distinguishable states distributed over the initiation and the post initiation phases. Whereas, the initiation phase occurs due to the collapse of the interaction cascade FMN-Q513-N492-L480-W491-Q479-V520-A524, the onset of the post initiation phase is marked by breaking of the hydrophobic interactions between the Jα-helix and the Iß-strand. This study indicates that the displacement of N492 out of the FMN binding pocket, not necessarily requiring Q513, is essential for the initiation of the Jα-helix unfolding. Rather, the structural reorientation of Q513 activates the protein to cross the hydrophobic barrier and enter the post initiation phase. Similarly, the structural deviations in N482, rather than its integral role in unfolding, could enhance the unfolding rates. Furthermore, the MSM studies on the wild-type and the Q513 mutant, provide the spatiotemporal roadmap that lay out the possible pathways of structural transition between the dark and the light states of the protein. Overall, the study provides insights useful to enhance the performance of AsLOV2-based photoswitches.


Assuntos
Avena , Simulação de Dinâmica Molecular , Proteínas de Plantas , Avena/química , Proteínas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA