Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 35(10): 673-678, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38813906

RESUMO

Hyperactivation of the Ca2+/calmodulin-dependent phosphatase calcineurin (CN) is observed in reactive astrocytes associated with neuroinflammation and progressive degenerative diseases, like Alzheimer's disease. Apart from key transcription factors (e.g. nuclear factor of activated t cells and nuclear factor-κB) very few other CN-dependent pathways have been studied in astrocytes. The hemichannel protein, connexin 43 (Cx43) is found at high levels in astrocytes and contains a CN-sensitive Ser residue near its carboxy terminus. CN-dependent dephosphorylation of Cx43 has been reported in primary astrocytes treated with injurious stimuli, but much remains unknown about CN/Cx43 interactions in the context of neuroinflammation and disease. Western blots were used to assess total Cx43 and dephosphorylated Cx43 subtypes in rat embryonic primary astrocytes treated with a hyperactive CN fragment (ΔCN, via adenovirus), or with a proinflammatory cytokine cocktail. Under similar treatment conditions, an ethidium bromide (EtBr) uptake assay was used to assess membrane permeability. Effects of ΔCN and cytokines were tested in the presence or absence of the CN inhibitor, cyclosporin A. A connexin inhibitor, carbenoxolone was also used in EtBr assays to assess the involvement of connexins in membrane permeability. Treatment with ΔCN or cytokines increased dephosphorylated Cx43 levels in conjunction with increased membrane permeability (elevated EtBr uptake). Effects of ΔCN or cytokine treatment were blocked by cyclosporine A. Treatment-induced changes in EtBr uptake were also inhibited by carbenoxolone. The results suggest that Cx43 hemichannels could be an important mechanism through which astrocytic CN disrupts neurologic function associated with neurodegenerative disease.


Assuntos
Astrócitos , Calcineurina , Permeabilidade da Membrana Celular , Conexina 43 , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Conexina 43/metabolismo , Animais , Fosforilação/efeitos dos fármacos , Calcineurina/metabolismo , Ratos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Ratos Sprague-Dawley
2.
Aging Cell ; 20(7): e13416, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34117818

RESUMO

Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3-4 months old) infused with oligomeric Aß peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aß plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders.


Assuntos
Doença de Alzheimer/genética , Fatores de Transcrição NFATC/antagonistas & inibidores , Placa Amiloide/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos
3.
J Neurosci ; 37(25): 6132-6148, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28559377

RESUMO

Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Astrócitos , Calcineurina/genética , Fatores de Transcrição NFATC/genética , Rede Nervosa/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores , Inativação Gênica , Hipocampo/metabolismo , Aprendizagem em Labirinto , Camundongos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
4.
PLoS One ; 7(5): e38170, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666474

RESUMO

The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4-6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca(2+) channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling.


Assuntos
Envelhecimento/metabolismo , Cálcio/metabolismo , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo , Envelhecimento/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Transtorno Depressivo/fisiopatologia , Suscetibilidade a Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fenótipo , Ratos , Ratos Endogâmicos F344 , Receptores de AMPA/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Solubilidade , Sinapses/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores
5.
Neurosci Lett ; 469(3): 365-9, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20026181

RESUMO

In astrocytes, the Ca(2+)-dependent protein phosphatase calcineurin (CN) strongly regulates neuro-immune/inflammatory cascades through activation of the transcription factor, nuclear factor of activated T cells (NFAT). While primary cell cultures provide a useful model system for investigating astrocytic CN/NFAT signaling, variable results may arise both within and across labs because of differences in culture conditions. Here, we determined the extent to which serum and cell confluency affect basal and evoked astrocytic NFAT activity in primary cortical astrocyte cultures. Cells were grown to either approximately 50% or >90% confluency, pre-loaded with an NFAT-luciferase reporter construct, and maintained for 16 h in medium with or without 10% fetal bovine serum (FBS). NFAT-dependent luciferase expression was then measured 5h after treatment with vehicle alone to assess basal NFAT activity, or with Ca(2+) mobilizers and IL-1 beta to assess evoked activity. The results revealed significantly higher levels of basal NFAT activity in FBS-containing medium, regardless of cell confluency. Conversely, evoked NFAT activation was significantly lower in serum-containing medium, with an even greater inhibition observed in confluent cultures. Application of 10% FBS to serum-free astrocyte cultures quickly evoked a roughly seven-fold increase in NFAT activity that was significantly reduced by co-delivery of neutralizing agents for IL-1 beta, TNFalpha, and/or IFN gamma, suggesting that serum occludes evoked NFAT activation through a cytokine-based mechanism. Together, the results demonstrate that the presence of serum and cell confluency have a major impact on CN/NFAT signaling in primary astrocyte cultures and therefore must be taken into consideration when using this model system.


Assuntos
Astrócitos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Soro/metabolismo , Animais , Bovinos , Técnicas de Cultura de Células , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Interferon gama/antagonistas & inibidores , Interferon gama/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Luciferases/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
6.
J Biol Chem ; 283(32): 21953-64, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18541537

RESUMO

Interleukin-1beta (IL-1beta) and the Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, have each been shown to play an important role in neuroinflammation. However, whether these signaling molecules interact to coordinate immune/inflammatory processes and neurodegeneration has not been investigated. Here, we show that exogenous application of IL-1beta (10 ng/ml) recruited calcineurin/NFAT (nuclear factor of activated T cells) activation in primary astrocyte-enriched cultures within minutes, through a pathway involving IL-1 receptors and L-type Ca(2+) channels. Adenovirus-mediated delivery of the NFAT inhibitor, VIVIT, suppressed the IL-1beta-dependent induction of several inflammatory mediators and/or markers of astrocyte activation, including tumor necrosis factor alpha, granulocyte/macrophage colony-stimulating factor, and vimentin. Expression of an activated form of calcineurin in one set of astrocyte cultures also triggered the release of factors that, in turn, stimulated NFAT activity in a second set of "naive" astrocytes. This effect was prevented when calcineurin-expressing cultures co-expressed VIVIT, suggesting that the calcineurin/NFAT pathway coordinates positive feedback signaling between astrocytes. In the presence of astrocytes and neurons, 48-h delivery of IL-1beta was associated with several excitotoxic effects, including NMDA receptor-dependent neuronal death, elevated extracellular glutamate, and hyperexcitable synaptic activity. Each of these effects were reversed or ameliorated by targeted delivery of VIVIT to astrocytes. IL-1beta also caused an NFAT-dependent reduction in excitatory amino acid transporter levels, indicating a possible mechanism for IL-1beta-mediated excitotoxicity. Taken together, the results have potentially important implications for the propagation and maintenance of neuroinflammatory signaling processes associated with many neurodegenerative conditions and diseases.


Assuntos
Astrócitos/metabolismo , Calcineurina/metabolismo , Interleucina-1beta/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Interleucina-1beta/farmacologia , Neurônios/efeitos dos fármacos , Transporte Proteico , Proteínas/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...