Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 14(2): 467-489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455423

RESUMO

In conversation with endometrial tumor cells, the endometrial cancer-associated fibroblasts (CAFs) are the "partners in crime" of uterine neoplasm's highly heterogeneous tumor microenvironment (TME). We designed a laboratory-friendly method to culture endometrial CAFs on a patient-to-patient basis for studying the CAF-TME and CAF-tumor cell interaction(s). Here, we present a comprehensive characterization of endometrial CAFs derived from patients' tumor tissues (T) and tumor-adjacent normal tissues (N). We used more than 80 T and N from 53 consecutive consented patients with endometrial cancers at the Avera Cancer Institute. We derived TCAF and NCAF in a non-enzymatic feeder-layer culture and characterized their expression of markers by qRT-PCR, flow cytometry, immunocytochemistry, immunofluorescence, and Western blot. Although similar in the expression pattern of EpCAM-/CK18-/vimentin+ as in ovarian CAFs, endometrial NCAFs, and TCAFs characteristically presented dual morphology in culture. Endometrial CAFs were EpCAM-/CK18-/CD45-/CD31-/SMA+/TE-7+/PDGFRA+/CXCL12+/Meflin+/CD155+/CD90+ with patient-specific positivity for S100A4/FAP/PD-L1/CD44. Endometrial CAFs expressed mRNAs for signaling proteins of several pathways and receptor-ligands, including (1) cell cycle pathway, (2) TGF pathway, (3) FGF pathway, (4) Wnt-beta-catenin pathway, (5) HER pathway, (6) tyrosine kinase receptor ligands, and (7) steroid receptors. We tested the hypoxic response of CAFs to show that endometrial CAFs upregulate MMP1 in a HIF-1a-independent manner. In trying to delineate the relationship between expressions of CAF markers and T-cells in the tumor tissue, we observed that FAP-positive CAFs that are derived from CD4/CD8 positive tumor tissue expressed CXCL12 mRNA. The data indicate the role of the CXCL12-CXCR4 pathway of the CAF-rich stroma in the lymphocytic infiltration of the tumor. We demonstrate that endometrial CAFs can be cultured in an enzymatic-digestion-independent manner, and their signaling landscape can be mapped toward understanding CAF-TME dialogue. Our data will help unearth the functional relevance of endometrial CAFs in the context of clinical outcomes and designing CAF-inclusive therapy in the future.

2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542414

RESUMO

Lymphovascular invasion (LVSI) is defined as the presence of tumor cells within a definite endothelial-lined space (lymphatics or blood vessels) in the organ surrounding invasive carcinoma. The presence of LVI is associated with an increased risk of lymph nodes and distant metastases. Lymphovascular invasion is described as cancer within blood or lymph vessels and is an independent risk factor for metastasis, recurrence, and mortality. This study aims to present the marker-based immunohistological characterization of cells around LVSI in a high-grade adenocarcinoma of the endometrium to build a cellular atlas of cells of LVSI. A cellular characterization of the cells around lymphovascular space invasion in a 67-year-old female patient with invasive high-grade serous endometrial adenocarcinomas is presented. Resected tumor tissue from a consented patient with invasive high-grade serous endometrial adenocarcinoma was obtained within an hour of surgery. The expressions of the epithelial markers (CK8, 18, and EpCAM), LCA (leukocyte common antigen) marker (CD45), proliferation marker (Ki67), apoptosis markers (cleaved PARP and cleaved caspase3), immune cell markers (CD3, CD4, CD8, CD56, CD68, CD163, FoxP3, PD-1, PD-L1), pro-inflammatory marker (IL-12-RB2), and fibroblast/mesenchyme markers (S100A7, SMA, and TE-7) of the resected tissue on the IHC stains were evaluated and scored by a pathologist. Acknowledging the deterministic role of LVSI in a high-grade adenocarcinoma of the endometrium, our study presents the first marker-based immunohistological atlas of the tumor and TME compartments in the context of epithelial cell markers, proliferation markers, apoptosis markers, macrophage markers, and fibroblast markers. Our study demonstrates that an aggressive disease like a high-grade adenocarcinoma of the endometrium inflicts the pro-metastatic event of LVSI by involving the immune landscape of both tumor and TME. This study demonstrates, for the first time, that the tumor cells within LVSI are positive for IL-12R-B2 and S100A4.


Assuntos
Adenocarcinoma , Neoplasias do Endométrio , Feminino , Humanos , Idoso , Neoplasias do Endométrio/patologia , Microambiente Tumoral , Invasividade Neoplásica/patologia , Endométrio/patologia , Adenocarcinoma/patologia , Estudos Retrospectivos , Estadiamento de Neoplasias
3.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446260

RESUMO

The bipartite landscape of tumor cells and stromal cells determines a tumor's response to treatment during disease management. In endometrial cancers (ECs), the mechanistic contribution of PD-L1/L2 and PD-1 signaling of the host's tumor microenvironment (TME) (CAF and immune cells) in the context of the tumor cells is elusive. To understand the tumor-stroma-immune crosstalk, we studied the compartmental pattern of PD-L1/L2 and PD-1 expression in EC tissues and their matched CAFs. Over 116 surgically resected tumors (T) and the tumor-adjacent normal tissues (N) were obtained from consented unselected consecutive patients. IHC was performed in T, N-epi-thelium, and the stromal mesenchymal environment (SME; mesenchyme) in the T and N tissues. The staining intensity and distribution patterns of PD-L1/L2 and PD-1 in the FFPE sections of T and N were evaluated by a pathologist using a standard scoring system of TPS and CPS. We tested the PD-L1/L2 and PD-1 immune landscape of tumor-TME pair and normal epithelial-stromal mesenchyme pairs from patients with different grades of disease vis-à-vis their CAF PD-L1 levels. We used qRT-PCR to determine the expressions of mRNAs, while the flow cytometry and ICC determined the level of expression of proteins. We observed higher levels of PD-L1 mRNA and protein expression in primary CAFs from the resected tumor tissue compared to the tumor-adjacent normal tissues. We also determined the expression of patients' soluble PD-L1/L2 as peripheral readouts of PD-L1/L2 and PD-1. As we evaluated the results in the context of their pathological parameters, such as grades, stages, lymphovascular invasion, percentage of myometrial invasion, and dMMR in patients, the dominance of PD-L1 expression in TME was positively correlated to the higher pathological grades of tumors, and its relationship with the dMMR. Since the neutralization of CD8-positive cytotoxic T-cells is PD-L1-dependent, our data indicate that irrespective of the PD-L1 positivity of tumor cells, the PD-L1-positive CAFs can play a critical role in bringing out an additional load of PD-L1 for an effective engagement of PD-1 within a tumor mass.


Assuntos
Antígeno B7-H1 , Neoplasias do Endométrio , Feminino , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral/genética , Neoplasias do Endométrio/genética
4.
Biomedicines ; 11(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37238998

RESUMO

The management of advanced or recurrent endometrial cancers presents a challenge due to the development of resistance to treatments. The knowledge regarding the role of the tumor microenvironment (TME) in determining the disease's progression and treatment outcome has evolved in recent years. As a TME component, cancer-associated fibroblasts (CAFs) are essential in developing drug-induced resistance in various solid tumors, including endometrial cancers. Hence, an unmet need exists to test the role of endometrial CAF in overcoming the roadblock of resistance in endometrial cancers. We present a novel tumor-TME two-cell ex vivo model to test CAF's role in resisting the anti-tumor drug, paclitaxel. Endometrial CAFs, both NCAFs (tumor-adjacent normal-tissue-derived CAFs) and TCAFs (tumor-tissue-derived CAFs) were validated by their expression markers. Both TCAFs and NCAFs expressed positive markers of CAF, including SMA, FAP, and S100A4, in varying degrees depending on the patients, while they consistently lacked the negative marker of CAF, EpCAM, as tested via flow cytometry and ICC. CAFs expressed TE-7 and immune marker, PD-L1, via ICC. CAFs better resisted the growth inhibitory effect of paclitaxel on endometrial tumor cells in 2D and 3D formats compared to the resistance of the tumoricidal effect of paclitaxel in the absence of CAFs. TCAF resisted the growth inhibitory effect of paclitaxel on endometrial AN3CA and RL-95-2 cells in an HyCC 3D format. Since NCAF similarly resisted the growth inhibitor action of paclitaxel, we tested NCAF and TCAF from the same patient to demonstrate the protective action of NCAF and TCAF in resisting the tumoricidal effect of paclitaxel in AN3CA in both 2D and 3D matrigel formats. Using this hybrid co-culture CAF and tumor cells, we established a patient-specific, laboratory-friendly, cost-effective, and time-sensitive model system to test drug resistance. The model will help test the role of CAFs in developing drug resistance and contribute to understanding tumor cell-CAF dialogue in gynecological cancers and beyond.

5.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047422

RESUMO

Cancer-associated fibroblasts (CAFs) within a solid tumor can support the progression of cancer. We studied the identification and characterization of patient-derived endometrial CAFs in the context of their clinical relevance in endometrial cancers. We established patient-derived primary cultures of CAFs from surgically resected tumors (TCAF) and tumor-adjacent normal (NCAF) tissues in 53 consented patients with success rates of 97.7% and 75%, respectively. A passage of CAF was qualified by the (1) absence of CK 8,18,19, EpCAM, CD45, and CD31, and (2) presence of SMAalpha, S100A4, CD90, FAP, TE-7, CD155, PD-L1, TGFB, PDGFRA (qRT-PCR, flow cytometry, Western blot, ICC). Out of the 44 established CAFs, 31 were aggressive (having an early, i.e., 4-7 week, establishment time and/or >3 passages) compared to 13 which were non-aggressive. A post-surgery-event (PSE) was observed in 7 out of 31 patients bearing aggressive CAFs, 2 of whom were also positive for CTCs, while none of the 13 patients bearing non-aggressive CAFs had events. A positive correlation was found between patients with grade 3 (p = 0.025) as well as stage 3/4 diseases (p = 0.0106) bearing aggressive CAFs and the PSE. Finally, aggressive TCAFs from patients with PSE resisted the effects of paclitaxel and lenvatinib on the growth of HUVEC and endometrial tumor cells. Our study is the first to report a correlation between the PSE and the aggressive nature of CAFs in endometrial cancers and provides an undeniable reason to study the in-depth mechanism of CAF function towards the development of treatment resistance in endometrial cancers.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Endométrio , Feminino , Humanos , Fibroblastos Associados a Câncer/patologia , Relevância Clínica , Endométrio/cirurgia , Endométrio/patologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/cirurgia , Neoplasias do Endométrio/patologia , Antígenos Thy-1 , Microambiente Tumoral
6.
Biomedicines ; 11(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36672620

RESUMO

Ovarian cancers rank first in both aggressiveness and dismal prognosis among gynecological neoplasms. The poor outcome is explained by the fact that most patients present with late-stage disease and progress through the first line of treatment. Ovarian neoplasms, especially epithelial ovarian cancers, are diagnosed at advanced/metastatic stages, often with a high angiogenesis index, one of the hallmarks of ovarian cancers with rapid progression and poor outcome as resistance to anti-angiogenic therapy develops. Despite therapy, the metastatic progression of aggressive ovarian cancer is a spectacularly selective function of tumor cells aided and abetted by the immune, mesenchymal and angiogenic components of the tumor microenvironment (TME) that enforces several pro-metastatic event(s) via direct and indirect interactions with stromal immune cells, cancer-associated fibroblasts (CAFs), and vascular endothelial cells. Since transdifferentiation of tumor endothelium is one of the major sources of CAFs, we hypothesized that ovarian CAF plays a critical role in resisting anti-angiogenic effects via direct crosstalk with endothelium and hence plays a direct role in the development of resistance to anti-angiogenic drugs. To test the hypothesis, we set up a hybrid ex vivo model for co-culture comprising Patient-Derived ex vivo primary CAFs from ovarian tumor samples and human umbilical vein endothelial cells (HUVEC). Patient-Derived CAFs were characterized by the mRNA and protein expression of positive (SMA, S100A4, TE-7, FAP-A, CD90/THY1), negative (EpCAM, CK 8,18, CD31, CD44, CD45), functional (PDGFRA, TGFB1, TGFB2, TGFRA) and immunological markers (PD-L1, PD-L2, PD-1) associated with CAFs by qRT-PCR, flow cytometry, Western blot, and ICC. Data from our HUVEC-on-CAF ex vivo Hybrid Co-Culture (HyCC) study demonstrate the pro-angiogenic effect of Patient-Derived ovarian CAFs by virtue of their ability to resist the effect of anti-angiogenic drugs, thereby aiding the development of resistance to anti-angiogenic drugs. Ascertaining direct experimental proof of the role of CAFs in developing resistance to specific anti-angiogenic drugs will provide an opportunity to investigate new drugs for counteracting CAF resistance and "normalizing/re-educating" TME in aggressive ovarian cancers. Our data provide a unique experimental tool for the personalized testing of anti-angiogenic drugs, positively predicting the development of future resistance to anti-angiogenic drugs well before it is clinically encountered in patients.

7.
Cancers (Basel) ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230499

RESUMO

The blood of patients with solid tumors contains circulating tumor-associated cells, including epithelial cells originating from the tumor mass, such as circulating tumor cells (CTCs), or phagocytic myeloid cells (differentiated monocytes), such as circulating cancer-associated macrophage-like cells (CAMLs). We report for the first time the identification and in-depth morphologic characterization of CAMLs in patients with endometrial cancers. We isolated CAMLs by size-based filtration on lithographically fabricated membranes followed by immunofluorescence, using a CD45+/CK 8,18,19+/EpCAM+/CD31+/macrophage-like nuclear morphology, from > 70 patients. Irrespective of the histological and pathological parameters, 98% of patients were positive for CAMLs. Two size-based subtypes of CAMLs, <20 µm (tiny) and >20 µm (giant) CAMLs, of distinctive polymorphic morphologies with mononuclear or fused polynuclear structures in several morphological states were observed, including apoptotic CAMLs, CAML−WBC doublets, conjoined CAMLs, CAML−WBC clusters, and CTC−CAML−WBC clusters. In contrast, CAMLs were absent in patients with non-neoplastic/benign tumors, healthy donors, and leucopaks. Enumerating CTCs simultaneously from the same patient, we observed that CTC-positive patients are positive for CAMLs, while 55% out of all CAML-positive patients were found positive for CTCs. Our study demonstrated for the first time the distinctive morphological characteristics of endometrial CAMLs in the context of the presence of CTCs in patients.

8.
Cancers (Basel) ; 14(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740537

RESUMO

The source of circulating tumor cells (CTC) in the peripheral blood of patients with solid tumors are from primary cancer, metastatic sites, and a disseminated tumor cell pool. As 90% of cancer-related deaths are caused by metastatic progression and/or resistance-associated treatment failure, the above fact justifies the undeniable predictive and prognostic value of identifying CTC in the bloodstream at stages of the disease progression and resistance to treatment. Yet enumeration of CTC remains far from a standard routine procedure either for post-surgery follow-ups or ongoing adjuvant therapy. The most compelling explanation for this paradox is the absence of a convenient, laboratory-friendly, and cost-effective method to determine CTC. We presented a specific and sensitive laboratory-friendly parallel double-detection format method for the simultaneous isolation and identification of CTC from peripheral blood of 91 consented and enrolled patients with various malignant solid tumors of the lung, endometrium, ovary, esophagus, prostate, and liver. Using a pressure-guided method, we used the size-based isolation to capture CTC on a commercially available microfilter. CTC identification was carried out by two expression marker-based independent staining methods, double-immunocytochemistry parallel to standard triple-immunofluorescence. The choice of markers included specific markers for epithelial cells, EpCAM and CK8,18,19, and exclusion markers for WBC, CD45. We tested the method's specificity based on the validation of the staining method, which included positive and negative spiked samples, blood from the healthy age-matched donor, healthy age-matched leucopaks, and blood from metastatic patients. Our user-friendly cost-effective CTC detection technique may facilitate the regular use of CTC detection even in community-based cancer centers for prognosis, before and after surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...