Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 398: 109958, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661056

RESUMO

BACKGROUND: Characterization of normal arousal states has been achieved by fitting predictions of corticothalamic neural field theory (NFT) to electroencephalographic (EEG) spectra to yield relevant physiological parameters. NEW METHOD: A prior fitting method is extended to distinguish conscious and unconscious states in healthy and brain injured subjects by identifying additional parameters and clusters in parameter space. RESULTS: Fits of NFT predictions to EEG spectra are used to estimate neurophysiological parameters in healthy and brain injured subjects. Spectra are used from healthy subjects in wake and sleep and from patients with unresponsive wakefulness syndrome, in a minimally conscious state (MCS), and emerged from MCS. Subjects cluster into three groups in parameter space: conscious healthy (wake and REM), sleep, and brain injured. These are distinguished by the difference X-Y between corticocortical (X) and corticothalamic (Y) feedbacks, and by mean neural response rates α and ß to incoming spikes. X-Y tracks consciousness in healthy individuals, with smaller values in wake/REM than sleep, but cannot distinguish between brain injuries. Parameters α and ß differentiate deep sleep from wake/REM and brain injury. COMPARISON WITH EXISTING METHODS: Other methods typically rely on laborious clinical assessment, manual EEG scoring, or evaluation of measures like Φ from integrated information theory, for which no efficient method exists. In contrast, the present method can be automated on a personal computer. CONCLUSION: The method provides a means to quantify consciousness and arousal in healthy and brain injured subjects, but does not distinguish subtypes of brain injury.


Assuntos
Lesões Encefálicas , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Nível de Alerta/fisiologia , Encéfalo/fisiologia , Vigília/fisiologia , Eletroencefalografia/métodos
2.
R Soc Open Sci ; 5(10): 171952, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30473798

RESUMO

Neural field theory is used to study the system-level effects of plasticity in the corticothalamic system, where arousal states are represented parametrically by the connection strengths of the system, among other physiologically based parameters. It is found that the plasticity dynamics have no fixed points or closed cycles in the parameter space of the connection strengths, but parameter subregions exist where flows have opposite signs. Remarkably, these subregions coincide with previously identified regions that correspond to wake and slow-wave sleep, thus demonstrating state dependence of the sign of synaptic modification. We then show that a closed cycle in the parameter space is possible when the plasticity dynamics are driven by the ascending arousal system, which cycles the brain between sleep and wake to complete a closed loop that includes arcs through the opposite-flow subregions. Thus, it is concluded that both wake and sleep are necessary, and together are able to stabilize connection weights in the brain over the daily cycle, thereby providing quantitative realization of the synaptic homeostasis hypothesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...