Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111921

RESUMO

Non-destructive plant stress phenotyping begins with traditional one-dimensional (1D) spectroscopy, followed by two-dimensional (2D) imaging, three-dimensional (3D) or even temporal-three-dimensional (T-3D), spectral-three-dimensional (S-3D), and temporal-spectral-three-dimensional (TS-3D) phenotyping, all of which are aimed at observing subtle changes in plants under stress. However, a comprehensive review that covers all these dimensional types of phenotyping, ordered in a spatial arrangement from 1D to 3D, as well as temporal and spectral dimensions, is lacking. In this review, we look back to the development of data-acquiring techniques for various dimensions of plant stress phenotyping (1D spectroscopy, 2D imaging, 3D phenotyping), as well as their corresponding data-analyzing pipelines (mathematical analysis, machine learning, or deep learning), and look forward to the trends and challenges of high-performance multi-dimension (integrated spatial, temporal, and spectral) phenotyping demands. We hope this article can serve as a reference for implementing various dimensions of non-destructive plant stress phenotyping.

2.
Plant Sci ; 330: 111660, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36822504

RESUMO

The planting of salt-tolerant plants is regarded as the one of important measurements to improve the saline-alkali lands. The outstanding biological properties of JUNCAOs have made them candidates to improve and utilize saline-alkali lands. At present, little attention has been paid to developing a non-destructive and high throughput approach to evaluate the salt tolerance of JUNCAO. To close the gaps, three typical JUNCAOs (A.donax. No.1, A.donax. No.5 and A.donax. No.10) were evaluated by combining prompt chlorophyll a fluorescence (ChlF) with hyperspectral spectroscopy (HS). The results showed that salt stress reduced relative stem growth, water content, and total chlorophyll content but enhanced the malondialdehyde (MDA) content. It caused a significant change in chlorophyll a fluorescence kinetics with an appearance of L-, K- and J-band, implying damaging energetic connectivity between PSII units, uncoupling of the oxygen evolving complex (OEC) and inhibition of the QA-reoxidation. The negative impact of salt stress on JUNCAOs increased with the increasing level of salt concentration. Effect on spectral reflectance in the in the visible region with shifts on red edge position (REP) and blue edge position (BEP) to shorter wavelength was also found in salt stress plants. Combining principal component analysis (PCA) with the membership function method based on spectral indices and JIP-test parameters could well screen JUNCAOs salt tolerant ability with the highest for A.donax. NO.10 but lowest for A.donax. NO.1, which was the same as that of using conventional approach. The results demonstrate that prompt ChlF coupling with HS could provide potentials for non-invasively and high-throughput phenotyping salt tolerance in JUNCAOs.


Assuntos
Clorofila , Tolerância ao Sal , Clorofila A , Fluorescência , Clorofila/análise , Estresse Salino , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...