Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 152: 104595, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052320

RESUMO

Insect cuticle is an evolutionary-malleable exoskeleton that has specialised for various functions. Insects that detect the pressure component of sound bear specialised sound-capturing tympani evolved from cuticular thinning. Whilst the outer layer of insect cuticle is composed of non-living chitin, its mechanical properties change during development and aging. Here, we measured the displacements of the tympanum of the desert Locust, Schistocerca gregaria, to understand biomechanical changes as a function of age and noise-exposure. We found that the stiffness of the tympanum decreases within 12 h of noise-exposure and increases as a function of age, independent of noise-exposure. Noise-induced changes were dynamic with an increased tympanum displacement to sound within 12 h post noise-exposure. Within 24 h, however, the tone-evoked displacement of the tympanum decreased below that of control Locusts. After 48 h, the tone-evoked displacement of the tympanum was not significantly different to Locusts not exposed to noise. Tympanal displacements reduced predictably with age and repeatably noise-exposed Locusts (every three days) did not differ from their non-noise-exposed counterparts. Changes in the biomechanics of the tympanum may explain an age-dependent decrease in auditory detection in tympanal insects.


Assuntos
Orelha Média , Gafanhotos , Animais , Orelha Média/fisiologia , Membrana Timpânica/fisiologia , Gafanhotos/fisiologia , Som , Fenômenos Biomecânicos
2.
Neurobiol Aging ; 133: 39-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913625

RESUMO

After overexposure to loud music, we experience a decrease in our ability to hear (robustness), which usually recovers (resilience). Here, we exploited the amenable auditory system of the desert locust, Schistocerca gregaria, to measure how robustness and resilience depend on age. We found that gene expression changes are dominated by age as opposed to noise exposure. We measured sound-evoked nerve activity for young and aged locusts directly, after 24 hours and 48 hours after noise exposure. We found that both young and aged locusts recovered their auditory nerve function over 48 hours. We also measured the sound-evoked transduction current in individual auditory neurons, and although the transduction current magnitude recovered in the young locusts after noise exposure, it failed to recover in the aged locusts. A plastic mechanism compensates for the decreased transduction current in aged locusts. We suggest key genes upregulated in young noise-exposed locusts that mediate robustness to noise exposure and find potential candidates responsible for compensatory mechanisms in the auditory neurons of aged noise-exposed locusts.


Assuntos
Gafanhotos , Animais , Gafanhotos/genética , Audição , Nervo Coclear , Ruído , Envelhecimento/genética
3.
Front Cell Dev Biol ; 11: 1138392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274746

RESUMO

One leading hypothesis for why we lose our hearing as we age is a decrease in ear metabolism. However, direct measurements of metabolism across a lifespan in any auditory system are lacking. Even if metabolism does decrease with age, a question remains: is a metabolic decrease a cause of age-related auditory decline or simply correlative? We use an insect, the desert locust Schistocerca gregaria, as a physiologically versatile model to understand how cellular metabolism correlates with age and impacts on age-related auditory decline. We found that auditory organ metabolism decreases with age as measured fluorometrically. Next, we measured the individual auditory organ's metabolic rate and its sound-evoked nerve activity and found no correlation. We found no age-related change in auditory nerve activity, using hook electrode recordings, and in the electrophysiological properties of auditory neurons, using patch-clamp electrophysiology, but transduction channel activity decreased. To further test for a causative role of the metabolic rate in auditory decline, we manipulated metabolism of the auditory organ through diet and cold-rearing but found no difference in sound-evoked nerve activity. We found that although metabolism correlates with age-related auditory decline, it is not causative. Finally, we performed RNA-Seq on the auditory organs of young and old locusts, and whilst we found enrichment for Gene Ontology terms associated with metabolism, we also found enrichment for a number of additional aging GO terms. We hypothesize that age-related hearing loss is dominated by accumulative damage in multiple cell types and multiple processes which outweighs its metabolic decline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...