Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201540

RESUMO

Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a rare lysosomal disease caused by congenital enzymatic deficiencies in heparan sulfate (HS) degradation, leading to organ dysfunction. The most severe hallmark of MPS III comprises neurological alterations, although gastrointestinal symptoms (GISs) have also been shown to be relevant in many patients. Here, we explored the contribution of the gut microbiota to MPS III GISs. We analyzed the composition and functionality of the gut microbiota in two MPS III siblings with the same mutation (c.544C > T, c.1080delC, in the SGSH gene) and the same diet, but with differences in their GISs, including recurrent diarrhea in one of them. Using 16S sequencing, we observed that the MPS III patients exhibited decreased alpha diversity and a lower abundance of Lachnospiraceae and Bifidobacteriaceae accompanied by a higher abundance of the Ruminococcaceae and Rikenellaceae families than the healthy control subjects. Comparing siblings, we found an increased abundance of Bacteroidaceae and a lower abundance of Ruminococcaceae and Akkermansiaceae in the GIS-free patient. This patient also had a higher relative abundance of Sus genes (SusA, SusB, SusE, and SusG) involved in glycosaminoglycan metabolism. We found higher HS levels in the stool of the two MPS III patients than in healthy volunteers, particularly in the patient with GISs. Functionally, whole fecal metabolites from the patient with GISs induced oxidative stress in vitro in healthy monocytes. Finally, the Bacteroides thetaiotaomicron strain isolated from MPS III stool samples exhibited HS degradation ability. Overall, our results reveal different microbiota compositions and functionalities in MPS III siblings, who exhibited differential gastrointestinal symptomatology. Our study may serve as a gateway to explore the impact of the gut microbiota and its potential to enhance the quality of life in Sanfilippo syndrome patients.


Assuntos
Microbioma Gastrointestinal , Mucopolissacaridose III , Irmãos , Humanos , Mucopolissacaridose III/microbiologia , Mucopolissacaridose III/genética , Microbioma Gastrointestinal/genética , Masculino , Feminino , Fezes/microbiologia , Heparitina Sulfato/metabolismo , Criança
2.
Microbiol Spectr ; 12(2): e0276223, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230939

RESUMO

Serratia spp. is a well-recognized pathogen in neonates; however, limited data are available in adults. We studied microbiological and clinical characteristics of Serratia spp. causing bloodstream infections (BSI) in our institution (January 2005-July 2020). Overall, 141 BSI episodes affecting 139 patients were identified and medical records reviewed. Antimicrobial susceptibility was recovered from our informatics system and 118 isolates from 116 patients were available for further microbiological studies. Whole genome sequencing (WGS) was completed in 107 isolates. Incidence of Serratia BSI was 0.3/1000 overall admissions (range 0.12-0.60), with maximum prevalence (27 episodes, 19.1%) during 2017-2018. Relevant patients' clinical characteristics were 71.9% ≥60 years (n = 100), with high comorbidity rates (49%, ≥2), 23 (74.2%) of them died within 1 month of the BSI episode. WGS identified all isolates as Serratia marcescens when Kraken bioinformatics taxonomic tool was used despite some which were identified as Serratia nematodiphila (32/118) or Serratia ureilytica (5/118) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nevertheless, when using MASH distance, Serratia nevei (63/107), S. ureilytica (38/107), and S. marcescens (6/107) were assigned. Carbapenemase (blaVIM-1) and extended-spectrum ß-lactases (ESBL) (blaSHV-12) genes were found in seven and three isolates, respectively, one of them expressing both genes. The worldwide-disseminated IncL/M scaffold plasmid was identified in six VIM producers. Four genotypes were established based on their virulence factors and resistome. Serratia spp. emerged as a relevant nosocomial pathogen causing BSI in elderly patients in our hospital, particularly in recent years with a remarkable increase in antibiotic resistance. ESBL and carbapenemases production related to plasmid dissemination are particularly noteworthy.IMPORTANCESerratia spp. is the third most frequent pathogen involved in outbreaks at neonatal facilities and is primarily associated with bacteremia episodes. In this study, we characterized all causing bloodstream infection (BSI) in patients admitted to our hospital during a 16-year period (2005-2020). Despite having no neonatal intensive care unit in our hospital, this study revealed that Serratia spp. is a relevant pathogen causing BSI in elderly patients with high comorbidity rates. A significant increase of antimicrobial resistance was detected over time, particularly in 2020 and coinciding with the coronavirus disease (COVID-19) pandemic and nosocomial spread of multidrug-resistant Serratia spp. isolates. extended-spectrum ß-lactases and carbapenemases genes associated with plasmid dissemination, typically detected in other Enterobacterales species, were also identified, reinforcing the role of Serratia spp. in the antimicrobial resistance landscape. Additionally, this work highlights the need to reclassify the species of Serratia, since discrepancies were observed in the identification when using different tools.


Assuntos
Infecção Hospitalar , Sepse , Recém-Nascido , Adulto , Humanos , Idoso , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Serratia , beta-Lactamases/genética , Sepse/microbiologia , Serratia marcescens , Infecção Hospitalar/microbiologia , Testes de Sensibilidade Microbiana , Lactase
3.
Heliyon ; 9(10): e20854, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867899

RESUMO

Acute myocardial infarction (AMI) is associated with systemic inflammatory processes and metabolic alterations. Microbial-derived metabolites, such as short-chain fatty acids and trimethylamine N-oxide (TMAO), have emerged in recent years as key players in the modulation of inflammation, with potential implications for cardiovascular diseases. We performed a prospective observational study that monitored the serological concentration of bacterial metabolites in 45 young patients (<55 years) without cardiovascular risk factors but with AMI, at hospital admission and at 3 months of follow-up, and compared them with a control group. TMAO and acetate levels were significantly higher in AMI, whereas butyrate and propionate were significantly lower. The acetate/propionate ratio showed the most discrimination between AMI and controls by receiver operating characteristic analysis (area under the curve 0.769, P < 0.0001). A multivariate logistic regression model revealed that this ratio was independently associated with AMI. Short-chain fatty acid concentrations, but not TMAO, exhibited significant correlations with inflammatory and coagulation parameters. Three months after the acute AMI event, all metabolite levels returned to those observed in healthy controls except butyrate. In conclusion, our study reveals disturbances of the serological concentration of microbiota-derived metabolites in AMI that are also related to inflammatory and coagulation parameters. These findings highlight an interesting field of study in the potential role of microbial metabolites from gut in cardiovascular disease.

4.
EBioMedicine ; 97: 104841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890368

RESUMO

BACKGROUND: Sepsis is associated with T-cell exhaustion, which significantly reduces patient outcomes. Therefore, targeting of immune checkpoints (ICs) is deemed necessary for effective sepsis management. Here, we evaluated the role of SIGLEC5 as an IC ligand and explored its potential as a biomarker for sepsis. METHODS: In vitro and in vivo assays were conducted to both analyse SIGLEC5's role as an IC ligand, as well as assess its impact on survival in sepsis. A multicentre prospective cohort study was conducted to evaluate the plasmatic soluble SIGLEC5 (sSIGLEC5) as a mortality predictor in the first 60 days after admission in sepsis patients. Recruitment included sepsis patients (n = 346), controls with systemic inflammatory response syndrome (n = 80), aneurism (n = 11), stroke (n = 16), and healthy volunteers (HVs, n = 100). FINDINGS: SIGLEC5 expression on monocytes was increased by HIF1α and was higher in septic patients than in healthy volunteers after ex vivo LPS challenge. Furthermore, SIGLEC5-PSGL1 interaction inhibited CD8+ T-cell proliferation. Administration of sSIGLEC5r (0.8 mg/kg) had adverse effects in mouse endotoxemia models. Additionally, plasma sSIGLEC5 levels of septic patients were higher than HVs and ROC analysis revealed it as a mortality marker with an AUC of 0.713 (95% CI, 0.656-0.769; p < 0.0001). Kaplan-Meier survival curve showed a significant decrease in survival above the calculated cut-off (HR of 3.418, 95% CI, 2.380-4.907, p < 0.0001 by log-rank test) estimated by Youden Index (523.6 ng/mL). INTERPRETATION: SIGLEC5 displays the hallmarks of an IC ligand, and plasma levels of sSIGLEC5 have been linked with increased mortality in septic patients. FUNDING: Instituto de Salud Carlos III (ISCIII) and "Fondos FEDER" to ELC (PIE15/00065, PI18/00148, PI14/01234, PI21/00869), CDF (PI21/01178), RLR (FI19/00334) and JAO (CD21/00059).


Assuntos
Sepse , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica , Linfócitos T CD8-Positivos/metabolismo , Lectinas , Ligantes , Prognóstico , Estudos Prospectivos , Curva ROC , Sepse/etiologia
5.
Arterioscler Thromb Vasc Biol ; 43(11): 2213-2222, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37732482

RESUMO

BACKGROUND: Systemic inflammatory diseases, such as sepsis and severe COVID-19, provoke acute respiratory distress syndrome in which the pathological hyperpermeability of the microvasculature, induced by uncontrolled inflammatory stimulation, causes pulmonary edema. Identifying the inflammatory mediators that induce human lung microvascular endothelial cell barrier dysfunction is essential to find the best anti-inflammatory treatments for critically ill acute respiratory distress syndrome patients. METHODS: We have compared the responses of primary human lung microvascular endothelial cells to the main inflammatory mediators involved in cytokine storms induced by sepsis and SARS-CoV2 pulmonary infection and to sera from healthy donors and severely ill patients with sepsis. Endothelial barrier function was measured by electric cell-substrate impedance sensing, quantitative confocal microscopy, and Western blot. RESULTS: The human lung microvascular endothelial cell barrier was completely disrupted by IL (interleukin)-6 conjugated with soluble IL-6R (IL-6 receptor) and by IL-1ß (interleukin-1beta), moderately affected by TNF (tumor necrosis factor)-α and IFN (interferon)-γ and unaffected by other cytokines and chemokines, such as IL-6, IL-8, MCP (monocyte chemoattractant protein)-1 and MCP-3. The inhibition of IL-1 and IL-6R simultaneously, but not separately, significantly reduced endothelial hyperpermeability on exposing human lung microvascular endothelial cells to a cytokine storm consisting of 8 inflammatory mediators or to sera from patients with sepsis. Simultaneous inhibition of IL-1 and JAK (Janus kinase)-STAT (signal transducer and activator of transcription protein), a signaling node downstream IL-6 and IFN-γ, also prevented septic serum-induced endothelial barrier disruption. CONCLUSIONS: These findings strongly suggest a major role for both IL-6 trans-signaling and IL-1ß signaling in the pathological increase in permeability of the human lung microvasculature and reveal combinatorial strategies that enable the gradual control of pulmonary endothelial barrier function in response to a cytokine storm.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Humanos , Interleucina-6/metabolismo , Síndrome da Liberação de Citocina , Células Endoteliais/metabolismo , RNA Viral/metabolismo , Pulmão/metabolismo , Interferon gama/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , COVID-19/metabolismo , Sepse/metabolismo , Interleucina-1/metabolismo
6.
Front Immunol ; 14: 1136029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153580

RESUMO

Introduction: COVID-19 vaccines based on mRNA have represented a revolution in the biomedical research field. The initial two-dose vaccination schedule generates potent humoral and cellular responses, with a massive protective effect against severe COVID-19 and death. Months after this vaccination, levels of antibodies against SARS-CoV-2 waned, and this promoted the recommendation of a third vaccination dose. Methods: We have performed an integral and longitudinal study of the immunological responses triggered by the booster mRNA-1273 vaccination, in a cohort of health workers previously vaccinated with two doses of the BNT162b2 vaccine at University Hospital La Paz located in Madrid, Spain. Circulating humoral responses and SARS-CoV-2-specific cellular reactions, after ex vivo restimulation of both T and B cells (cytokines production, proliferation, class switching), have been analyzed. Importantly, all along these studies, the analyses have been performed comparing naïve and subjects recovered from COVID-19, addressing the influence of a previous infection by SARS-CoV-2. Furthermore, as the injection of the third vaccination dose was contemporary to the rise of the Omicron BA.1 variant of concern, T- and B-cell-mediated cellular responses have been comparatively analyzed in response to this variant. Results: All these analyses indicated that differential responses to vaccination due to a previous SARS-CoV-2 infection were balanced following the boost. The increase in circulating humoral responses due to this booster dropped after 6 months, whereas T-cell-mediated responses were more stable along the time. Finally, all the analyzed immunological features were dampened in response to the Omicron variant of concern, particularly late after the booster vaccination. Conclusion: This work represents a follow-up longitudinal study for almost 1.5 years, analyzing in an integral manner the immunological responses triggered by the prime-boost mRNA-based vaccination schedule against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , Vacinas contra COVID-19 , Estudos Longitudinais , Vacinação
7.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047205

RESUMO

Garlic (Allium sativum) has historically been associated with antioxidant, immunomodulatory, and microbiocidal properties, mainly due to its richness in thiosulfates and sulfur-containing phytoconstituents. Sepsis patients could benefit from these properties because it involves both inflammatory and refractory processes. We evaluated the effects of thiosulfinate-enriched Allium sativum extract (TASE) on the immune response to bacterial lipopolysaccharide (LPS) by monocytes from healthy volunteers (HVs) and patients with sepsis. We also explored the TASE effects in HIF-1α, described as the key transcription factor leading to endotoxin tolerance in sepsis monocytes through IRAK-M expression. Our results showed TASE reduced the LPS-triggered reactive oxygen species (ROS) production in monocytes from both patients with sepsis and HVs. Moreover, this extract significantly reduced tumor necrosis factor (TNF)-α, interleukin-1ß, and interleukin-6 production in LPS-stimulated monocytes from HVs. However, TASE enhanced the inflammatory response in monocytes from patients with sepsis along with increased expression of human leukocyte antigen-DR. Curiously, these dual effects of TASE on immune response were also found when the HV cohort was divided into low- and high-LPS responders. Although TASE enhanced TNFα production in the LPS-low responders, it decreased the inflammatory response in the LPS-high responders. Furthermore, TASE decreased the HIF-1α pathway-associated genes IRAK-M, VEGFA and PD-L1 in sepsis cells, suggesting HIF-1α inhibition by TASE leads to higher cytokine production in these cells as a consequence of IRAK-M downregulation. The suppression of this pathway by TASE was confirmed in vitro with the prolyl hydroxylase inhibitor dimethyloxalylglycine. Our data revealed TASE's dual effect on monocyte response according to status/phenotype and suggested the HIF-1α suppression as the possible underlying mechanism.


Assuntos
Alho , Sepse , Humanos , Antioxidantes/farmacologia , Alho/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Mol Ther Nucleic Acids ; 32: 247-262, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090418

RESUMO

Circulating extracellular vesicles (EVs) are proposed to participate in enhancing pathways of recovery after stroke through paracrine signaling. To verify this hypothesis in a proof-of-concept study, blood-derived allogenic EVs from rats and xenogenic EVs from humans who experienced spontaneous good recovery after an intracerebral hemorrhage (ICH) were administered intravenously to rats at 24 h after a subcortical ICH. At 28 days, both treatments improved the motor function assessment scales score, showed greater fiber preservation in the perilesional zone (diffusion tensor-fractional anisotropy MRI), increased immunofluorescence markers of myelin (MOG), and decreased astrocyte markers (GFAP) compared with controls. Comparison of the protein cargo of circulating EVs at 28 days from animals with good vs. poor recovery showed down-expression of immune system activation pathways (CO4, KLKB1, PROC, FA9, and C1QA) and of restorative processes such as axon guidance (RAC1), myelination (MBP), and synaptic vesicle trafficking (SYN1), which is in line with better tissue preservation. Up-expression of PCSK9 (neuron differentiation) in xenogenic EVs-treated animals suggests enhancement of repair pathways. In conclusion, the administration of blood-derived EVs improved recovery after ICH. These findings open a new and promising opportunity for further development of restorative therapies to improve the outcomes after an ICH.

9.
Infect Immun ; 91(2): e0001223, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722977

RESUMO

Colistin resistance is acquired by different lipopolysaccharide (LPS) modifications. We proposed to evaluate the of effect in vivo colistin resistance acquisition on the innate immune response. We used a pair of ST11 clone Klebsiella pneumoniae strains: an OXA-48, CTX-M-15 K. pneumoniae strain susceptible to colistin (CS-Kp) isolated from a urinary infection and its colistin-resistant variant (CR-Kp) from the same patient after prolonged treatment with colistin. No mutation of previously described genes for colistin resistance (pmrA, pmrB, mgrB, phoP/Q, arnA, arnC, arnT, ugdH, and crrAB) was found in the CR-Kp genome; however, LPS modifications were characterized by negative-ion matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The strains were cocultured with human monocytes to determine their survival after phagocytosis and induction to apoptosis. Also, monocytes were stimulated with bacterial LPS to study cytokine and immune checkpoint production. The addition of 4-amino-4-deoxy-l-arabinose (Ara4N) to lipid A of CR-Kp accounted for the colistin resistance. CR-Kp survived significantly longer inside human monocytes after being phagocytosed than did the CS-Kp strain. In addition, LPS from CR-Kp induced both higher apoptosis in monocytes and higher levels of cytokine and immune checkpoint production than LPS from CS-Kp. Our data reveal a variable impact of colistin resistance on the innate immune system, depending on the responsible mechanism. Adding Ara4N to LPS in K. pneumoniae increases bacterial survival after phagocytosis and elicits a higher inflammatory response than its colistin-susceptible counterpart.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Colistina/farmacologia , Lipopolissacarídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Imunidade Inata , Klebsiella pneumoniae , Citocinas , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
10.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077075

RESUMO

Human-adipose-derived mesenchymal stem cells (hADMSCs) are multipotent stem cells which have become of great interest in stem-cell therapy due to their less invasive isolation. However, they have limited migration and short lifespans. Therefore, understanding the mechanisms by which these cells could migrate is of critical importance for regenerative medicine. Methods: Looking for novel alternatives, herein, hADMSCs were isolated from adipose tissue and co-cultured with human monocytes ex vivo. Results: A new fused hybrid entity, a foam hybrid cell (FHC), which was CD90+CD14+, resulted from this co-culture and was observed to have enhanced motility, proliferation, immunomodulation properties, and maintained stemness features. Conclusions: Our study demonstrates the generation of a new hybrid cellular population that could provide migration advantages to MSCs, while at the same time maintaining stemness properties.


Assuntos
Células-Tronco Mesenquimais , Monócitos , Tecido Adiposo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos
11.
Cell Mol Life Sci ; 79(8): 396, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35789437

RESUMO

In the course of atherogenesis, the spleen plays an important role in the regulation of extramedullary hematopoiesis, and in the control of circulating immune cells, which contributes to plaque progression. Here, we have investigated the role of splenic nucleotide-binding oligomerization domain 1 (NOD1) in the recruitment of circulating immune cells, as well as the involvement of this immune organ in extramedullary hematopoiesis in mice fed on a high-fat high-cholesterol diet (HFD). Under HFD conditions, the absence of NOD1 enhances the mobilization of immune cells, mainly neutrophils, from the bone marrow to the blood. To determine the effect of NOD1-dependent mobilization of immune cells under pro-atherogenic conditions, Apoe-/- and Apoe-/-Nod1-/- mice fed on HFD for 4 weeks were used. Splenic NOD1 from Apoe-/- mice was activated after feeding HFD as inferred by the phosphorylation of the NOD1 downstream targets RIPK2 and TAK1. Moreover, this activation was accompanied by the release of neutrophil extracellular traps (NETs), as determined by the increase in the expression of peptidyl arginine deiminase 4, and the identification of citrullinated histone H3 in this organ. This formation of NETs was significantly reduced in Apoe-/-Nod1-/- mice. Indeed, the presence of Ly6G+ cells and the lipidic content in the spleen of mice deficient in Apoe and Nod1 was reduced when compared to the Apoe-/- counterparts, which suggests that the mobilization and activation of circulating immune cells are altered in the absence of NOD1. Furthermore, confirming previous studies, Apoe-/-Nod1-/- mice showed a reduced atherogenic disease, and diminished recruitment of neutrophils in the spleen, compared to Apoe-/- mice. However, splenic artery ligation reduced the atherogenic burden in Apoe-/- mice an effect that, unexpectedly was lost in Apoe-/-Nod1-/- mice. Together, these results suggest that neutrophil accumulation and activity in the spleen are driven in part by NOD1 activation in mice fed on HFD, contributing in this way to regulating atherogenic progression.


Assuntos
Aterosclerose , Armadilhas Extracelulares , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Armadilhas Extracelulares/metabolismo , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Baço/metabolismo
12.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35884505

RESUMO

BACKGROUND: The cancer cell fusion theory could be one of the best explanations for the metastasis from primary tumours. METHODS: Herein, we co-cultured colorectal cancer (CRC) stem cells with human monocytes and analysed the properties of the generated tumour hybrid cells (THCs). The presence of THCs in the bloodstream together with samples from primary and metastatic lesions and their clinical correlations were evaluated in CRC patients and were detected by both FACS and immunofluorescence methods. Additionally, the role of SIGLEC5 as an immune evasion molecule in colorectal cancer was evaluated. RESULTS: Our data demonstrated the generation of THCs after the in vitro co-culture of CRC stem cells and monocytes. These cells, defined as CD45+CD14+EpCAM+, showed enhanced migratory and proliferative abilities. The THC-specific cell surface signature allows identification in matched primary tumour tissues and metastases as well as in the bloodstream from patients with CRC, thus functioning as a biomarker. Moreover, SIG-LEC5 expression on in vitro generated THCs has shown to be involved in the mechanism for immune evasion. Additionally, sSIGLEC5 levels correlated with THC numbers in the prospective cohort of patients. CONCLUSIONS: Our results indicate the generation of a hybrid entity after the in vitro co-culture between CRC stem cells and human monocytes. Moreover, THC numbers present in patients are related to both prognosis and the later spread of metastases in CRC patients.

13.
J Clin Med ; 11(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35743356

RESUMO

Identifying patients' immune system status has become critical to managing SARS-CoV-2 infection and avoiding the appearance of secondary infections during a hospital stay. Despite the high volume of research, robust severity and outcome markers are still lacking in COVID-19. We recruited 87 COVID-19 patients and analyzed, by unbiased automated software, 356 parameters at baseline emergency department admission including: high depth immune phenotyping and immune checkpoint expression by spectral flow cytometry, cytokines and other soluble molecules in plasma as well as routine clinical variables. We identified 69 baseline alterations in the expression of immune checkpoints, Ig-like V type receptors and other immune population markers associated with severity (O2 requirement). Thirty-four changes in these markers/populations were associated with secondary infection appearance. In addition, through a longitudinal sample collection, we described the changes which take place in the immune system of COVID-19 patients during secondary infections and in response to corticosteroid treatment. Our study provides information about immune checkpoint molecules and other less-studied receptors with Ig-like V-type domains such as CD108, CD226, HVEM (CD270), B7H3 (CD276), B7H5 (VISTA) and GITR (CD357), defining these as novel interesting molecules in severe and corticosteroids-treated acute infections.

14.
Biomedicines ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625783

RESUMO

Lung cancer (LC) continues to be the leading cause of cancer-related deaths in both men and women worldwide. After complete tumour resection, around half of the patients suffer from disease relapse, emphasising the critical need for robust relapse predictors in this disease. In search of such biomarkers, 83 patients with non-microcytic lung cancer and 67 healthy volunteers were studied. Pre-operative levels of sSIGLEC5 along with other soluble immune-checkpoints were measured and correlated with their clinical outcome. Soluble SIGLEC5 (sSIGLEC5) levels were higher in plasma from patients with LC compared with healthy volunteers. Looking into those patients who suffered relapse, sSIGLEC5 and sLAG3 were found to be strong relapse predictors. Following a binary logistic regression model, a sSIGLEC5 + sLAG3 score was established for disease relapse prediction (area under the curve 0.8803, 95% confidence intervals 0.7955−0.9652, cut-off > 2.782) in these patients. Based on score cut-off, a Kaplan−Meier analysis showed that patients with high sSIGLEC5 + sLAG3 score had significantly shorter relapse-free survival (p ≤ 0.0001) than those with low sSIGLEC5 + sLAG3 score.Our study suggests that pre-operative sSIGLEC5 + sLAG3 score is a robust relapse predictor in LC patients.

16.
Biomed Pharmacother ; 148: 112769, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35247718

RESUMO

The bioavailability and regulation of iron is essential for central biological functions in mammals. The role of this element in ferroptosis and the dysregulation of its metabolism contribute to diseases, ranging from anemia to infections, alterations in the immune system, inflammation and atherosclerosis. In this sense, monocytes and macrophages modulate iron metabolism and splenic function, while at the same time they can worsen the atherosclerotic process in pathological conditions. Since the nucleotide-binding oligomerization domain 1 (NOD1) has been linked to numerous disorders, including inflammatory and cardiovascular diseases, we investigated its role in iron homeostasis. The iron content was measured in various tissues of Apoe-/- and Apoe-/-Nod1-/- mice fed a high-fat diet (HFD) for 4 weeks, under normal or reduced splenic function after ligation of the splenic artery. In the absence of NOD1 the iron levels decreased in spleen, heart and liver regardless the splenic function. This iron decrease was accompanied by an increase in the recruitment of F4/80+-macrophages in the spleen through a CXCR2-dependent signaling, as deduced by the reduced recruitment after administration of a CXCR2 inhibitor. CXCR2 mediates monocyte/macrophage chemotaxis to areas of inflammation and accumulation of leukocytes in the atherosclerotic plaque. Moreover, in the absence of NOD1, inhibition of CXCR2 enhanced atheroma progression. NOD1 activation increased the levels of GPX4 and other iron and ferroptosis regulatory proteins in macrophages. Our findings highlight the preeminent role of NOD1 in iron homeostasis and ferroptosis. These results suggest promising avenues of investigation for the diagnosis and treatment of iron-related diseases directed by NOD1.


Assuntos
Aterosclerose/patologia , Ferroptose/fisiologia , Macrófagos/patologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , Baço/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Quimiotaxia/fisiologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Distribuição Aleatória , Receptores de Interleucina-8B/metabolismo
17.
Nat Commun ; 13(1): 1525, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314690

RESUMO

A central question concerning natural competence is why orthologs of competence genes are conserved in non-competent bacterial species, suggesting they have a role other than in transformation. Here we show that competence induction in the human pathogen Staphylococcus aureus occurs in response to ROS and host defenses that compromise bacterial respiration during infection. Bacteria cope with reduced respiration by obtaining energy through fermentation instead. Since fermentation is energetically less efficient than respiration, the energy supply must be assured by increasing the glycolytic flux. The induction of natural competence increases the rate of glycolysis in bacteria that are unable to respire via upregulation of DNA- and glucose-uptake systems. A competent-defective mutant showed no such increase in glycolysis, which negatively affects its survival in both mouse and Galleria infection models. Natural competence foster genetic variability and provides S. aureus with additional nutritional and metabolic possibilities, allowing it to proliferate during infection.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Fermentação , Glicólise/genética , Camundongos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
18.
World J Gastrointest Oncol ; 14(1): 295-318, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35116118

RESUMO

BACKGROUND: Colorectal cancer (CRC) accounts for 9.4% of overall cancer deaths, ranking second after lung cancer. Despite the large number of factors tested to predict their outcome, most patients with similar variables show big differences in survival. Moreover, right-sided CRC (RCRC) and left-sided CRC (LCRC) patients exhibit large differences in outcome after surgical intervention as assessed by preoperative blood leukocyte status. We hypothesised that stronger indexes than circulating (blood) leukocyte ratios to predict RCRC and LCRC patient outcomes will result from combining both circulating and infiltrated (tumour/peritumour fixed tissues) concentrations of leukocytes. AIM: To seek variables involving leukocyte balances in peripheral blood and tumour tissues and to predict the outcome of CRC patients. METHODS: Sixty-five patients diagnosed with colon adenocarcinoma by the Digestive Surgery Service of the La Paz University Hospital (Madrid, Spain) were enrolled in this study: 43 with RCRC and 22 with LCRC. Patients were followed-up from January 2017 to March 2021 to record overall survival (OS) and recurrence-free survival (RFS) after surgical interventions. Leukocyte concentrations in peripheral blood were determined by routine laboratory protocols. Paraffin-fixed samples of tumour and peritumoural tissues were assessed for leukocyte concentrations by immunohistochemical detection of CD4, CD8, and CD14 marker expression. Ratios of leukocyte concentration in blood and tissues were calculated and evaluated for their predictor values for OS and RFS with Spearman correlations and Cox univariate and multivariate proportional hazards regression, followed by the calculation of the receiver-operating characteristic and area under the curve (AUC) and the determination of Youden's optimal cutoff values for those variables that significantly correlated with either RCRC or LCRC patient outcomes. RCRC patients from the cohort were randomly assigned to modelling and validation sets, and clinician-friendly nomograms were developed to predict OS and RFS from the respective significant indexes. The accuracy of the model was evaluated using calibration and validation plots. RESULTS: The relationship of leukocyte ratios in blood and peritumour resulted in six robust predictors of worse OS in RCRC: CD8+ lymphocyte content in peritumour (CD8pt, AUC = 0.585, cutoff < 8.250, P = 0.0077); total lymphocyte content in peritumour (CD4CD8pt, AUC = 0.550, cutoff < 10.160, P = 0.0188); lymphocyte-to-monocyte ratio in peritumour (LMRpt, AUC = 0.807, cutoff < 3.185, P = 0.0028); CD8+ LMR in peritumour (CD8MRpt, AUC = 0.757, cutoff < 1.650, P = 0.0007); the ratio of blood LMR to LMR in peritumour (LMRb/LMRpt, AUC = 0.672, cutoff > 0.985, P = 0.0244); and the ratio of blood LMR to CD8+ LMR in peritumour (LMRb/CD8MRpt, AUC = 0.601, cutoff > 1.485, P = 0.0101). In addition, three robust predictors of worse RFS in RCRC were found: LMRpt (AUC = 0.737, cutoff < 3.185, P = 0.0046); LMRb/LMRpt (AUC = 0.678, cutoff > 0.985, P = 0.0155) and LMRb/CD8MRpt (AUC = 0.615, cutoff > 1.485, P = 0.0141). Furthermore, the ratio of blood LMR to CD4+ LMR in peritumour (LMRb/CD4MRpt, AUC = 0.786, cutoff > 10.570, P = 0.0416) was found to robustly predict poorer OS in LCRC patients. The nomograms showed moderate accuracy in predicting OS and RFS in RCRC patients, with concordance index of 0.600 and 0.605, respectively. CONCLUSION: Easily obtainable variables at preoperative consultation, defining the status of leukocyte balances between peripheral blood and peritumoural tissues, are robust predictors for OS and RFS of both RCRC and LCRC patients.

19.
Cell Rep ; 38(2): 110235, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34986327

RESUMO

We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.


Assuntos
Vacina BNT162/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , COVID-19/virologia , Chlorocebus aethiops , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Ativação Linfocitária/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Células Vero
20.
Cancers (Basel) ; 14(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053451

RESUMO

Bladder cancer (BC) is the second most frequent cancer of the genitourinary system. The most successful therapy since the 1970s has consisted of intravesical instillations of Bacillus Calmette-Guérin (BCG) in which the tumor microenvironment (TME), including macrophages, plays an important role. However, some patients cannot be treated with this therapy due to comorbidities and severe inflammatory side effects. The overexpression of histone deacetylases (HDACs) in BC has been correlated with macrophage polarization together with higher tumor grades and poor prognosis. Herein we demonstrated that phenylbutyrate acid (PBA), a HDAC inhibitor, acts as an antitumoral compound and immunomodulator. In BC cell lines, PBA induced significant cell cycle arrest in G1, reduced stemness markers and increased PD-L1 expression with a corresponding reduction in histone 3 and 4 acetylation patterns. Concerning its role as an immunomodulator, we found that PBA reduced macrophage IL-6 and IL-10 production as well as CD14 downregulation and the upregulation of both PD-L1 and IL-1ß. Along this line, PBA showed a reduction in IL-4-induced M2 polarization in human macrophages. In co-cultures of BC cell lines with human macrophages, a double-positive myeloid-tumoral hybrid population (CD11b+EPCAM+) was detected after 48 h, which indicates BC cell-macrophage fusions known as tumor hybrid cells (THC). These THC were characterized by high PD-L1 and stemness markers (SOX2, NANOG, miR-302) as compared with non-fused (CD11b-EPCAM+) cancer cells. Eventually, PBA reduced stemness markers along with BMP4 and IL-10. Our data indicate that PBA could have beneficial properties for BC management, affecting not only tumor cells but also the TME.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...