RESUMO
Insect cell expression has been successfully used for the production of viral antigens as part of commercial vaccine development. As expression host, insect cells offer advantage over bacterial system by presenting the ability of performing post-translational modifications (PTMs) such as glycosylation and phosphorylation thus preserving the native functionality of the proteins especially for viral antigens. Insect cells have limitation in exactly mimicking some proteins which require complex glycosylation pattern. The recent advancement in insect cell engineering strategies could overcome this limitation to some extent. Moreover, cost efficiency, timelines, safety, and process adoptability make insect cells a preferred platform for production of subunit antigens for human and animal vaccines. In this chapter, we describe the method for producing the SARS-CoV2 spike ectodomain subunit antigen for human vaccine development and the virus like particle (VLP), based on capsid protein of porcine circovirus virus 2 (PCV2d) antigen for animal vaccine development using two different insect cell lines, SF9 & Hi5, respectively. This methodology demonstrates the flexibility and broad applicability of insect cell as expression host.
Assuntos
Antígenos Virais , Baculoviridae , Glicoproteína da Espícula de Coronavírus , Animais , Baculoviridae/genética , Antígenos Virais/genética , Antígenos Virais/imunologia , Células Sf9 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Recombinantes/genética , Linhagem Celular , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Glicosilação , Insetos/genética , Spodoptera , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologiaRESUMO
Current parenteral coronavirus disease 2019 (Covid-19) vaccines inadequately protect against infection of the upper respiratory tract. Additionally, antibodies generated by wild type (WT) spike-based vaccines poorly neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. To address the need for a second-generation vaccine, we have initiated a preclinical program to produce and evaluate a potential candidate. Our vaccine consists of recombinant Beta spike protein coadministered with synthetic CpG adjuvant. Both components are encapsulated within artificial cell membrane (ACM) polymersomes, synthetic nanovesicles efficiently internalized by antigen presenting cells, including dendritic cells, enabling targeted delivery of cargo for enhanced immune responses. ACM vaccine is immunogenic in C57BL/6 mice and Golden Syrian hamsters, evoking high serum IgG and neutralizing responses. Compared to an ACM-WT spike vaccine that generates predominantly WT-neutralizing antibodies, the ACM-Beta spike vaccine induces antibodies that neutralize WT and Beta viruses equally. Intramuscular (IM)-immunized hamsters are strongly protected from weight loss and other clinical symptoms after the Beta challenge but show delayed viral clearance in the upper airway. With intranasal (IN) immunization, however, neutralizing antibodies are generated in the upper airway concomitant with rapid and potent reduction of viral load. Moreover, antibodies are cross-neutralizing and show good activity against Omicron. Safety is evaluated in New Zealand white rabbits in a repeated dose toxicological study under Good Laboratory Practice (GLP) conditions. Three doses, IM or IN, at two-week intervals do not induce an adverse effect or systemic toxicity. Cumulatively, these results support the application for a Phase 1 clinical trial of ACM-polymersome-based Covid-19 vaccine (ClinicalTrials.gov identifier: NCT05385991).