Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(15): 26955-26966, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236877

RESUMO

A conceptually new approach to synchronizing accelerator-based light sources and external laser systems is presented. The concept is based on utilizing a sufficiently intense accelerator-based single-cycle terahertz pulse to slice a thereby intrinsically synchronized femtosecond-level part of a longer picosecond laser pulse in an electro-optic crystal. A precise synchronization of the order of 10 fs is demonstrated, allowing for real-time lock-in amplifier signal demodulation. We demonstrate successful operation of the concept with three benchmark experiments using a 4th generation accelerator-based terahertz light source, i.e. (i) far-field terahertz time-domain spectroscopy, (ii) terahertz high harmonic generation spectroscopy, and (iii) terahertz scattering-type scanning near-field optical microscopy.

2.
Opt Express ; 27(22): 32360-32369, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684450

RESUMO

Multi-color pump-probe techniques utilizing modern accelerator-based 4th generation light sources such as X-ray free electron lasers or superradiant THz facilities have become important science drivers over the past 10 years. In this type of experiments the precise knowledge of the properties of the involved accelerator-based light pulses crucially determines the achievable sensitivity and temporal resolution. In this work we demonstrate and discuss the powerful role pulse- and field-resolved- detection of superradiant THz pulses can play for improving the precision of THz pump - femtosecond laser probe experiments at superradiant THz facilities in particular and at 4th generation light sources in general. The developed diagnostic scheme provides real-time information on the properties of individual pulses from multiple accelerator based THz sources and opens a robust way for sub femtosecond timing. Correlations between amplitude and phase of the pulses emitted from different superradiant THz sources furthermore provide insides into the properties of the driving electron bunches and is of general interest for the ultra-fast diagnostics at 4th generation light sources.

3.
J Synchrotron Radiat ; 25(Pt 5): 1509-1513, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179191

RESUMO

The layout of an integrated millimetre-scale on-chip THz spectrometer is presented and its peformance demonstrated. The device is based on eight Schottky-diode detectors which are combined with narrowband THz antennas, thereby enabling the simultaneous detection of eight frequencies in the THz range on one chip. The size of the active detector area matches the focal spot size of superradiant THz radiation utilized in bunch compression monitors of modern linear electron accelerators. The 3 dB bandwidth of the on-chip Schottky-diode detectors is less than 10% of the center frequency and allows pulse-resolved detection at up to 5 GHz repetition rates. The performance of a first prototype device is demonstrated at a repetition rate of 100 kHz at the quasi-cw SRF linear accelerator ELBE operated with electron bunch charges between a few pC and 100 pC.

4.
Opt Lett ; 43(9): 2213-2216, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714793

RESUMO

In this Letter, the proof of principle for a scheme providing intrinsic femtosecond-level synchronization between an external laser system and fourth generation light sources is presented. The scheme is applicable at any accelerator-based light source that is based on the generation of coherent radiation from ultrashort electron bunches such as superradiant terahertz (THz) facilities or X-FELs. It makes use of a superradiant THz pulse generated by the accelerator as an intrinsically synchronized gate signal for electro-optical slicing. We demonstrate that the scheme enables a reduction of the timing instability by more than 2 orders of magnitude. This demonstration experiment thereby proves that intrinsically synchronized time-resolved experiments utilizing laser and accelerator-based radiation pulses on few tens of femtosecond (fs) to few fs timescales are feasible.

5.
Sci Rep ; 6: 22256, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924651

RESUMO

Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...