Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891657

RESUMO

Arcanobacterium hippocoleae is a Gram-positive fastidious bacterium and is occasionally isolated from the reproductive tract of apparently healthy mares (Equus caballus) or from mares with reproductive tract abnormalities. Apart from a few 16S rRNA gene-based GenBank sequences and one recent report on complete genome assembly, detailed genomic sequence and clinical experimental data are not available on the bacterium. Recently, we observed an unusual increase in the detection of the organism from samples associated with mare reproductive failures in Atlantic Canada. Two colony morphotypes (i.e., small, and large) were detected in culture media, which were identified as A. hippocoleae by MALDI-TOF mass spectrometry and 16S rRNA gene sequencing. Here, we report the whole genome sequencing and characterization of the morphotype variants. The genome length of the large phenotypes was between 2.42 and 2.43, and the small phenotype was 1.99 Mbs. The orthologous nucleotide identity between the large colony phenotypes was ~99%, and the large and small colony phenotypes was between 77.86 and 78.52%, which may warrant the classification of the two morphotypes into different species. Phylogenetic analysis based on 16S rRNA genes or concatenated housekeeping genes grouped the small and large colony variants into two different genotypic clusters. The UvrA protein, which is part of the nucleotide excision repair (NER) system, and 3-isopropoylmalate dehydratase small subunit protein expressed by the leuD gene were identified as potential virulence factors in the large and small colony morphotypes, respectively. However, detailed functional studies will be required to determine the exact roles of these and other identified hypothetical proteins in the cellular metabolism and potential pathogenicity of A. hippocoleae in mares.

2.
J Transl Med ; 22(1): 80, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243294

RESUMO

BACKGROUND: Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS: This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS: Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION: Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.


Assuntos
Infecções por Clostridium , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Humanos , Animais , Clostridium perfringens/genética , Galinhas/genética , RNA Ribossômico 16S/genética , Disbiose , Jejuno/química , Jejuno/patologia , Enterite/microbiologia , Enterite/patologia , Enterite/veterinária , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia
3.
Front Vet Sci ; 10: 1209597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920329

RESUMO

Variant avian reoviruses (ARVs) are economically important emerging pathogens of poultry, which mainly affect young broiler chickens and cause significant production losses. Currently, there are no effective commercial vaccines available for control and prevention of emerging variant ARVs. In this study, monovalent inactivated adjuvated (20% Emulsigen D) broiler breeder vaccines containing antigens from ARV genotype cluster (C) group -2, -4, -5, or -6, and a multivalent vaccine containing antigens from all the four indicated genotypic cluster groups were developed and evaluated for their efficacy in protecting broiler progenies against homologous or heterologous ARV challenge. The use of monovalent or multivalent inactivated vaccines in a prime-boost immunization strategy induced the production of ARV specific antibodies in broiler breeders. The maternal antibodies were effectively transferred to broiler progenies. Broiler progenies obtained from immunized breeders demonstrated milder clinical symptoms and reduced gross and histopathological lesions after homologous ARV challenge. More severe gross and histological lesions were observed in challenged progenies from unvaccinated broiler breeders. However, cross protection was not observed when either of the monovalent-vaccine groups were challenged with a heterologous virus. In addition, the progenies from the unvaccinated ARV challenged control or heterologous ARV challenged vaccinated groups had significantly reduced body weight gain (p < 0.01) than the unchallenged-control, challenged-multivalent, or homologous ARV-challenged monovalent vaccine groups. However, homologous ARV challenged progenies in the multivalent or monovalent vaccine groups had similar body weight gain as the control unchallenged group with significantly reduced viral load (p < 0.01) in the gastrocnemius tendon tissue. This study indicates that broad-spectrum protection of broiler progenies from variant ARV infections is feasible through the development of multivalent vaccines after proper characterization, selection and incorporation of multiple antigens based on circulating ARV genotypes in targeted regions.

4.
Poult Sci ; 101(8): 101983, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35793601

RESUMO

Enterococci and Escherichia coli are opportunistic pathogens of poultry and are associated with embryo and neonatal chick mortality. We have recently demonstrated that 56% of dead broiler chicken embryos in commercial hatcheries in western Canada were due to the coinfection of Enterococcus species and E. coli. The objective of this study was to investigate the host-pathogen interactions of Enterococcus faecalis and E. coli in developing chicken embryos. Embryonating eggs at 12 d of incubation were dipped in a solution of E. faecalis and/or E. coli for 30 s to expose the eggshell to study the migration and colonization of E. faecalis and E. coli in the internal organs of chicken embryos and subsequent neonatal chicken mortality following hatch. A multidrug-resistant E. faecalis isolate from a dead chicken embryo and an E. faecalis isolate from a case of yolk sac infection were able to colonize the internal organs of chicken embryos rapidly compared to an E. faecalis isolate from a healthy chicken without affecting viability or hatchability of embryos. Although E. faecalis colonized internal organs of chicken embryos, no evidence of inflammation of these organs nor the expression of virulence genes of E. faecalis was observed. Although E. faecalis and E. coli alone did not affect the viability of embryos, a significantly high neonatal chicken mortality (27%) was observed following exposure of embryos to both E. faecalis and E. coli. Upregulation of IL-1 and CXCR4 was evident 48 h before peak mortality of neonatal chickens; this could suggest a possible link of cytokine dysregulation to increased mortality in coinfected neonatal chickens. However, further studies are warranted to investigate this issue vis-à-vis coinfection with E. faecalis and E. coli in chicken embryos and neonatal chickens.


Assuntos
Coinfecção , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Embrião de Galinha , Galinhas , Coinfecção/veterinária , Enterococcus/genética , Enterococcus faecalis/genética , Escherichia coli , Infecções por Escherichia coli/veterinária , Óvulo , Virulência/genética
5.
Avian Dis ; 66(2): 165-175, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35723931

RESUMO

The poultry industry needs alternatives to antibiotics, as there are growing public concerns about the emergence of antimicrobial resistance owing to antimicrobial use in animal production. We have reported that the administration of neonatal chicks with synthetic DNA oligodeoxynucleotides containing unmethylated cytosine guanine dinucleotide (CpG) motifs (CpG-ODN) can protect against bacterial pathogens in chickens. The objective of this study was to compare the immunoprotective effects of CpG-ODN and probiotics against Escherichia coli infection vs. commonly used therapeutic antibiotics. Day-old broiler chicks were divided into five groups (n = 35/group; 30 for the challenge experiment and 5 for the flow cytometry analysis). The chicks in Group 1 received a single dose of CpG-ODN by the intramuscular route on day 4 (D4) posthatch (PH), and Group 2 received drinking water (DW) with a probiotic product (D1-D15 PH, DW). The Group 3 chicks received tetracycline antibiotics during D9-D13 in DW; the Group 4 chicks got sodium sulfamethazine on D9, D10, and D15 PH in DW; and the Group 5 chicks were administered intramuscular (IM) saline D4 PH, DW. We challenged all the groups (n = 30/group) with E. coli (1 × 105 or 1 × 106 colony-forming units/bird) on D8 PH through the subcutaneous route. Our data demonstrated that the CpG-ODNs, but not the probiotics, could protect neonatal broiler chickens against lethal E. coli septicemia, as would the tetracycline or sodium sulfamethazine. The flow cytometry analysis (n = 5/group) revealed enrichment of immune cells in the CpG-ODN group and a marked decrease in macrophages and T-cell numbers in antibiotics-treated groups, indicating immunosuppressive effects. Our data showed that, like therapeutic antibiotics, CpG-ODNs reduced clinical signs, decreased bacterial loads, and induced protection in chicks against E. coli septicemia. Unlike therapeutic antibiotics-induced immunosuppressive effects, CpG-ODN caused immune enrichment by increasing chicken immune cells recruitment. Furthermore, this study highlights that, although therapeutic antibiotics can treat bacterial infections, the ensuing immunosuppressive effects may negatively impact the overall chicken health.


Comparación de antibióticos terapéuticos, probióticos y CpG-ODN sintéticos en su eficacia protectora contra la infección letal por Escherichia coli y el impacto en el sistema inmunológico en pollos de engorde recién eclosionados. La industria avícola necesita alternativas a los antibióticos ya que existe una creciente preocupación pública sobre la aparición de resistencia a los antimicrobianos debido a su uso en la producción animal. Se ha informado que la administración de oligodesoxinucleótidos de ADN sintético que contienen motivos de dinucleótidos de citosina guanina (CpG) no metilados (CpG-ODN) a pollitos recién eclosionados puede proteger contra patógenos bacterianos en pollos. El objetivo de este estudio fue comparar los efectos inmunoprotectores de CpG-ODN y de los probióticos contra la infección por Escherichia coli frente a los antibióticos terapéuticos de uso común. Los pollos de engorde de un día se dividieron en cinco grupos (n = 35/grupo; 30 para el experimento de desafío y 5 para análisis de citometría de flujo). Los pollitos del Grupo 1 recibieron una dosis única de CpG-ODN por vía intramuscular el día 4 (D4) después de la eclosión (PH), y el Grupo 2 recibió agua potable (DW) con un producto probiótico del día uno al quince después de la eclosion en agua de bebida. Los pollitos del Grupo 3 recibieron tetraciclina durante los días nueve a trece (D9­D13) en agua de bebida (DW9; los pollitos del Grupo 4 recibieron sulfametazina de sodio en los días nueve, diez y 15 (D9, D10 y D15) después de la eclosion en agua de bebida; ya los pollitos del Grupo 5 se les administró solución salina intramuscular (IM) al día cuatro después de la eclosión en agua de bebida. Se desafiaron todos los grupos (n = 30/grupo) con E. coli (1 × 105 o 1 × 106 unidades formadoras de colonias/ave) en el día ocho después de la eclosión por vía subcutánea. Nuestros datos demostraron que los CpG-ODN, pero no los probióticos, pudieron proteger a los pollos de engorde recién eclosionados contra la septicemia letal por E. coli, al igual que la tetraciclina o la sulfametazina sódica. El análisis de citometría de flujo (n = 5/grupo) reveló un enriquecimiento de células inmunes en el grupo CpG-ODN y una marcada disminución en el número de macrófagos y células T en los grupos tratados con antibióticos, lo que indica efectos inmunosupresores. Nuestros datos mostraron que, al igual que los antibióticos terapéuticos, los CpG-ODN redujeron los signos clínicos, disminuyeron las cargas bacterianas e indujeron protección en los pollitos contra la septicemia por E. coli. A diferencia de los efectos inmunosupresores inducidos por antibióticos terapéuticos, los CpG-ODN provocaron un enriquecimiento inmunitario al aumentar el reclutamiento de células inmunitarias de pollo. Además, este estudio destaca que, aunque los antibióticos terapéuticos pueden tratar las infecciones bacterianas, los efectos inmunosupresores resultantes pueden tener un impacto negativo en la salud general de los pollos.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Probióticos , Sepse , Animais , Galinhas , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sulfametazina , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Oligodesoxirribonucleotídeos/farmacologia , Sistema Imunitário , Probióticos/farmacologia , Probióticos/uso terapêutico , Sepse/prevenção & controle , Sepse/veterinária , Sepse/microbiologia , Sódio , Tetraciclinas , Adjuvantes Imunológicos
6.
Front Microbiol ; 13: 869164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369435

RESUMO

Newly emerging arthrotropic avian reoviruses (ARVs) are genetically divergent, antigenically heterogeneous, and economically costly. Nevertheless, the mechanism of emerging ARV-induced disease pathogenesis and potential differences in virulence between virus genotypes have not been adequately addressed. In this study, the life cycle of ARV, including the formation of cytoplasmic ARV neo-organelles, paracrystalline structures, and virus release mechanisms, were characterized in the infected host cell by transmission electron microscopy (TEM). In addition, progressive changes in the structure of infected cells were investigated by time-lapse and field emission scanning electron (FE-SE) microscopy. ARVs from the four genotypic cluster groups included in the study caused gross and microscopic lesions in the infected birds. Marked infiltration of γδT cells, CD4+ and CD8+ T lymphocytes were observed in ARV infected tendon tissues starting day 3 post-infection. The ARV variant from genotype cluster-2 triggered significantly high trafficking of IFN-γ producing CD8+ T lymphocytes in tendon tissues and concomitantly showed high morbidity and severe disease manifestations. In contrast, the ARV variant from genotype cluster-4 was less virulent, caused milder disease, and accompanied less infiltration of IFN-γ producing CD8+ T cells. Interestingly, when we blunted antiviral immune responses using clodronate liposomes (which depletes antigen-presenting cells) or cyclosporin (which inhibits cytokine production that regulates T-cell proliferation), significantly lower IFN-γ producing CD8+ T cells infiltrated into tendon tissues, resulting in reduced tendon tissues apoptosis and milder disease manifestations. In summary, these data suggest that the degree of ARV virulence and tenosynovitis/arthritis are potentially directly associated with the ability of the virus to traffic massive infiltration of cytotoxic CD8+ T cells into the infected tissues. Moreover, the ability to traffic cytotoxic CD8+ T cells into infected tendon tissues and the severity of tenosynovitis differ between variants from different ARV genotype cluster groups. However, more than one virus isolate per genotype group needs to be tested to further confirm the association of pathogenicity with genotype. These findings can be used to further examine the interaction of viral and cellular pathways which are essential for the pathogenesis of the disease at the molecular level and to develop effective disease control strategies.

7.
J Vet Diagn Invest ; 33(6): 1188-1192, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34550025

RESUMO

We developed a PCR assay for the detection of Babesia odocoilei based on the 18S rRNA gene. Multiple specimens of B. odocoilei were examined, and the assay consistently produced a small specific PCR product of 306 bp. The PCR assay was also challenged with DNA from 13 other Babesia species and 2 Theileria species, originating from 10 different host species; however, nonspecific DNA amplification and multiple banding patterns were observed, and the amplicon banding patterns varied between different isolates of the same species. Sensitivity was determined to be 6.4 pg of DNA, and an estimated 0.0001% parasitism. This assay can be utilized for species-specific differential detection of B. odocoilei.


Assuntos
Babesia , Babesiose , Theileria , Animais , Babesia/genética , Babesiose/diagnóstico , DNA de Protozoário/genética , Reação em Cadeia da Polimerase/veterinária , RNA Ribossômico 18S/genética , Theileria/genética
8.
Sci Rep ; 11(1): 9028, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907214

RESUMO

Synthetic CpG-ODNs can promote antimicrobial immunity in neonatal chicks by enriching immune compartments and activating immune cells. Activated immune cells undergo profound metabolic changes to meet cellular biosynthesis and energy demands and facilitate the signaling processes. We hypothesize that CpG-ODNs induced immune activation can change the host's metabolic demands in neonatal chicks. Here, we used NMR-based metabolomics to explore the potential of immuno-metabolic interactions in the orchestration of CpG-ODN-induced antimicrobial immunity. We administered CpG-ODNs to day-old broiler chicks via intrapulmonary (IPL) and intramuscular (IM) routes. A negative control group was administered IPL distilled water (DW). In each group (n = 60), chicks (n = 40) were challenged with a lethal dose of Escherichia coli, two days post-CpG-ODN administration. CpG-ODN administered chicks had significantly higher survival (P < 0.05), significantly lower cumulative clinical scores (P < 0.05), and lower bacterial loads (P < 0.05) compared to the DW control group. In parallel experiments, we compared NMR-based serum metabolomic profiles in neonatal chicks (n = 20/group, 24 h post-treatment) treated with IM versus IPL CpG-ODNs or distilled water (DW) control. Serum metabolomics revealed that IM administration of CpG-ODN resulted in a highly significant and consistent decrease in amino acids, purines, betaine, choline, acetate, and a slight decrease in glucose. IPL CpG-ODN treatment resulted in a similar decrease in purines and choline but less extensive decrease in amino acids, a stronger decrease in acetate, and a considerable increase in 2-hydroxybutyrate, 3-hydroxybutyrate, formic acid and a mild increase in TCA cycle intermediates (all P < 0.05 after FDR adjustment). These perturbations in pathways associated with energy production, amino acid metabolism and nucleotide synthesis, most probably reflect increased uptake of nutrients to the cells, to support cell proliferation triggered by the innate immune response. Our study revealed for the first time that CpG-ODNs change the metabolomic landscape to establish antimicrobial immunity in neonatal chicks. The metabolites highlighted in the present study can help future targeted studies to better understand immunometabolic interactions and pinpoint the key molecules or pathways contributing to immunity.


Assuntos
Galinhas/imunologia , Galinhas/microbiologia , Infecções por Escherichia coli/veterinária , Metaboloma , Oligodesoxirribonucleotídeos/imunologia , Doenças das Aves Domésticas/imunologia , Administração por Inalação , Animais , Bacteriemia/imunologia , Bacteriemia/prevenção & controle , Bacteriemia/veterinária , Galinhas/sangue , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/imunologia , Injeções Intramusculares/veterinária , Oligodesoxirribonucleotídeos/administração & dosagem , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle
9.
Virus Evol ; 6(1): veaa025, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32411390

RESUMO

In the last decade, the emergence of variant strains of avian reovirus (ARV) has caused enormous economic impact in the poultry industry across Canada and USA. ARVs are non-enveloped viruses with ten segments of double-stranded RNA genome. So far, only six genotyping cluster groups are identified worldwide based on sequence analysis of the σC protein encoded by the S1 segment. In this study, we performed deep next generation whole-genome sequencing and analysis of twelve purified ARVs isolated from Saskatchewan, Canada. The viruses represent different genotyping cluster. A genome-wide sequence divergence of up to 25 per cent was observed between the virus isolates with a comparable and contrasting evolutionary history. The proportion of synonymous single-nucleotide variations (sSNVs) was higher than the non-synonymous (ns) SNVs across all the genomic segments. Genomic segment S1 was the most variable as compared with the other genes followed by segment M2. Evidence of positive episodic/diversifying selection was observed at different codon positions in the σC protein sequence, which is the genetic marker for the classification of ARV genotypes. In addition, the N-terminus of σC protein had a persuasive diversifying selection, which was not detected in other genomic segments. We identified only four ARV genotypes based on the most variable σC gene sequence. However, a different pattern of phylogenetic clustering was observed with concatenated whole-genome sequences. Together with the accumulation of point mutations, multiple re-assortment events appeared as mechanisms of ARV evolution. For the first time, we determined the mean rate of molecular evolution of ARVs, which was computed as 2.3 × 10-3 substitution/site/year. In addition, widespread geographic intermixing of ARVs was observed between Canada and USA, and between different countries of the world. In conclusion, the study provides a comprehensive analysis of the complete genome of different genotyping clusters of ARVs including their molecular rate of evolution and spatial distribution. The new findings in this study can be utilized for the development of effective vaccines and other control strategies against ARV-induced arthritis/tenosynovitis in the poultry industry worldwide.

10.
J Immunol Res ; 2020: 2704728, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411791

RESUMO

Immunoprotective function of oligodeoxynucleotides containing CpG motifs (CpG-ODN) has been demonstrated in neonatal chickens against common bacterial pathogens such as E.coli and Salmonella sp. Our recent study reported that CpG-ODN administration enriches immune compartments in neonatal chicks. However, a causal relationship between CpG-ODN-induced immune enrichment and protective mechanisms remains unestablished. In this study, we investigated in ovo administered CpG-ODN-mediated immune cell recruitment in the immunological niches in lymphoid (spleen) and nonlymphoid (lungs) organs using various doses of CpG-ODN and examined whether the immunological profiles have any correlation with immunoprotection against E.coli infection. Eighteen-day-old embryonated eggs were injected with either 5, 10, 25, and 50 µg of CpG-ODN or saline (n = ~40 per group). On the day of hatch (72 hr after CpG-ODN treatment), we collected the spleen and lungs (n = 3-4 per group) and examined the recruitment of macrophages/monocytes, their expression of MHCII and CD40, and the number of CD4+ and CD8+ T-cell subsets in the immunological niches in the spleen and lungs using flow cytometry. We observed the dose-dependent recruitment of immune cells, wherein 25 µg and 50 µg of CpG-ODN induced significant enrichment of immunological niches in both the spleen and the lungs. Four days after the CpG-ODN treatment (1-day after hatch), chicks were challenged with a virulent strain of E. coli (1 × 104 or 1 × 105 cfu, subcutaneously). Clinical outcome and mortality were monitored for 8 days postchallenge. We found that both 25 µg and 50 µg of CpG-ODN provided significant protection and reduced clinical scores compared to saline controls against E. coli infection. Overall, the present study revealed that CpG-ODNs orchestrate immunological niches in neonatal chickens in a dose-dependent manner that resulted in differential protection against E. coli infection, thus supporting a cause and effect relationship between CpG-ODN-induced immune enrichment and the antibacterial immunity.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Galinhas/imunologia , Escherichia coli/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Doenças das Aves Domésticas/prevenção & controle , Animais , Antibioticoprofilaxia/efeitos adversos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Galinhas/microbiologia , Relação Dose-Resposta Imunológica , Escherichia coli/isolamento & purificação , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia
11.
Sci Rep ; 10(1): 5343, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210244

RESUMO

The transition to antibiotic-free poultry production in the face of pathogenic threats is a very challenging task. We recently demonstrated that mucosal delivery of CpG-ODN alone by the intrapulmonary route (IPL) has potential as an effective alternative to antibiotics in neonatal chicks against Escherichia coli septicemia. How exactly mucosal delivery of CpG-ODN elicits, protective antibacterial immunity remained poorly understood. In this study, CpG-ODN or saline was delivered via the intrapulmonary route to day-old chicks (n = 80/group) using a compressor nebulizer in an acrylic chamber (1 mg/mL CpG-ODN for 15 minutes). In the first part of the study, two days after mucosal CpG-ODN delivery, 40 chicks from each group were challenged subcutaneously with 1 × 105 cfu (n = 20) or 1 × 106 cfu (n = 20) of E. coli and the mortality pattern was monitored for seven days. We found significantly higher survival, better clinical conditions and lower bacterial loads in chicks that received mucosal CpG-ODN. To explore the mechanisms behind this protective immunity, we first looked at the kinetics of the cytokine gene expression (three birds/ group/ time for 10 time-points) in the lungs and spleens. Multiplex gene analysis demonstrated a significant elevation of pro-inflammatory cytokine genes mRNA in the CpG-ODN group. Interleukin (IL)-1ß robustly upregulated many folds in the lung after CpG-ODN delivery. Lipopolysaccharide-induced tumor necrosis factor (LITAF) and IL-18 showed expression for an extended period in the lungs. Anti-inflammatory cytokine IL-10 was upregulated in both lungs and spleen, whereas IL-4 showed upregulation in the lungs. To investigate the kinetics of immune enrichment in the lungs and spleens, we performed flow cytometry, histology, and immunohistochemistry at 24, 48 and 72 hrs after CpG-ODN delivery. CpG-ODN treated lungs showed a significant enrichment with monocytes/macrophages and CD4+ and CD8+ T-cell subsets. Macrophages in CpG-ODN treated group demonstrated mature phenotypes (higher CD40 and MHCII expression). Importantly, mucosal delivery of CpG-ODN via the intrapulmonary route significantly enriched immune compartment in the spleen as well, suggesting a systemic effect in neonatal chicks. Altogether, intrapulmonary delivery of aerosolized CpG-ODN orchestrates protective immunity against E. coli septicemia by not only enhancing mucosal immunity but also the systemic immune responses.


Assuntos
Anti-Infecciosos/farmacologia , Infecções por Escherichia coli/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Doenças das Aves Domésticas/imunologia , Aerossóis/administração & dosagem , Aerossóis/química , Animais , Animais Recém-Nascidos , Anti-Infecciosos/administração & dosagem , Galinhas , Citocinas/genética , DNA Bacteriano/química , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Mimetismo Molecular , Mucosa , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/química , Doenças das Aves Domésticas/microbiologia , Sepse/imunologia , Sepse/prevenção & controle , Sepse/veterinária , Baço/efeitos dos fármacos , Baço/imunologia
12.
Int J Vet Sci Med ; 8(1): 9-17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083117

RESUMO

Antimicrobial resistance (AMR) is a global issue, posing a grave threat to the public, animal, and environmental health. The AMR surveillance at the level of the hatchery is crucial to develop an AMR control strategy in the poultry industry. The objective of this study was to investigate the AMR profiles of bacteria isolated from yolk material of non-viable broiler chicken embryos at hatch from commercial hatcheries in western Canada. Antimicrobial susceptibility testing was done using the Kirby-Bauer disk diffusion method focusing on Escherichia coli (n = 170) and Enterococcus (n = 256) species, which are commonly used as indicators of AMR evolution. E. coli isolates were resistant to tetracycline, ampicillin, amoxycillin-clavulanic acid, triple sulpha, ceftiofur, gentamycin, and spectinomycin at the rate of 52.9%, 50.6%, 40.0% 31.8%, 29.4%, 29.4%, 21.8% respectively. Among those, 37.1% of E. coli were multidrug resistant. The descending order of antimicrobial resistance of E. faecalis was; tetracycline (61.9%), ceftiofur (46.2%), bacitracin (43.9%), erythromycin (31.4%) and tylosin (27.4%). Multidrug resistance was detected in 40.4% of E. faecalis isolates, and 85.7% of E. faecium isolates. To the best of our knowledge, this is the first report on AMR surveillance of non-viable chicken embryos. Overall, the present study revealed that non-viable chicken embryos, an overlooked niche for AMR surveillance, harbour multidrug-resistant E. coli, and enterococci that can be a substantial source of superbugs in the environment. Our data also highlight the urgency of including non-viable chicken embryos in AMR surveillance programme to understand AMR dissemination and its control.

13.
Cell Microbiol ; 20(8): e12842, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29543378

RESUMO

Adenovirus protein VIII appears to connect core with the inner surface of the adenovirus capsid. Because protein-protein interactions are central to virus replication, identification of proteins interacting with protein VIII may help in understanding their role in adenovirus infection. Our yeast 2-hybrid assay indicated that protein VIII interacts with eukaryotic initiation factor 6 (eIF6). These findings were confirmed by Glutathione S-transferase-pull down assay, bimolecular fluorescent complementation assay, and coimmunoprecipitation assay in plasmid DNA transfected and bovine adenovirus-3 (BAdV-3) infected cells. The C-terminus amino acids 147 to 174 of protein VIII and N-terminus amino acids 44 to 97 of eIF6 are involved in these interactions. Polysome analysis demonstrated increased level of 60S ribosomal subunit and decreased level of 80S complex in protein VIII expressing cells or BAdV-3 infected cells. Our results suggest that formation of functional 80S ribosome appears impaired in the presence of protein VIII at late times post infection. We speculate that this impaired ribosome assembly may be responsible for the inhibition of cellular mRNA translation observed late in adenovirus infected cells. Moreover, analysis of recombinant BAdV-3 expressing mutant protein VIII (deletion of eIF6 interacting domain) suggests that interaction of protein VIII and eIF6 may help in preferential translation of adenovirus genes during late phase of adenovirus infection.


Assuntos
Interações Hospedeiro-Patógeno , Mastadenovirus/fisiologia , Fatores de Iniciação de Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Biologia Molecular/métodos , Ligação Proteica
14.
Res Vet Sci ; 118: 262-269, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29539591

RESUMO

Historically, fowl adenovirus (FAdV) associated inclusion body hepatitis (IBH) was considered a secondary disease in broiler chickens associated with immunosuppression. However, we previously reported the occurrence of IBH as a primary disease in the broiler chicken industry in Canada as a result of infections with various FAdV serotypes. Therefore, the objectives of this study were to develop an immunization strategy in broiler breeders using live FAdV 11-1047 and FAdV8a-TR59 to confer homologous and heterologous protection in broiler progeny against IBH and to study the efficacy of natural exposure of naïve broiler breeders to a vaccine virus from live FAdV vaccinated birds as an immunization technique. Broiler breeders vaccinated orally with FAdV8a-TR59 (1 × 104 TCID50/bird) and FAdV11-1047 (1 × 104 TCID50/bird), FAdV8a-TR59 (1 × 106 TCID50/bird) and FAdV11-1047 (1 × 106 TCID50/bird) or FAdV8b (1 × 106 TCID50/bird) transferred substantial levels of neutralizing antibodies to their progeny. The efficacy of maternal antibodies was studied by challenging 14-day old broiler chickens with 1 × 107 TCID50 of FAdV2-685, FAdV7-x11a like, FAdV8a-TR59, FAdV8b-SK or FAdV11-1047 which are the dominant serotypes causing IBH outbreaks in Canada. Broiler chickens from the low and high dose vaccinated breeders were significantly protected against all serotypes of FAdV (P < 0.05). Comingling of unvaccinated broiler breeders with FAdV-vaccinated broiler breeders was an effective immunization technique for in-contact naïve birds. This study confirms that IBH can be effectively controlled in Canada by vaccination of broiler breeder parents with a bivalent vaccine containing live FAdV8a-TR59 and FAdV11-1047.


Assuntos
Vacinas contra Adenovirus/administração & dosagem , Aviadenovirus/imunologia , Galinhas , Hepatite Viral Animal/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Animais , Canadá , Hepatite , Hepatite Viral Animal/imunologia , Corpos de Inclusão/virologia , Doenças das Aves Domésticas/imunologia
15.
Vaccine ; 36(5): 744-750, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29292175

RESUMO

Fowl adenovirus (FAdV) is comprised of five species (A to E) and 12 serotypes (1-7, 8a, 8b, 9-11). Inclusion body hepatitis (IBH) is caused by FAdV-7, 8a, 8b (species E) and FAdV-2 and 11 (species D). Commercial vaccines against IBH are not available in Canada. Autogenous FAdV broiler breeder vaccines are now used in some areas where outbreaks of IBH are occurring. The objective of this study was to evaluate the efficacy of a bivalent (species D and E) live and an inactivated FAdV broiler breeder vaccine in protecting broiler chicks against IBH through maternal antibody (MtAb) transfer. FAdV seronegative broiler breeders (n = 300/group) received either a live or inactivated bivalent (FAdV-8b-SK + FAdV-11-1047) vaccine. The live vaccine (1 × 104 TCID50 of each virus/bird) was given orally once at 16 weeks of age and the inactivated vaccine (1 × 106TCID50 of each virus + 20% Emulsigen D) was given intramuscularly at 16 and 19 weeks of age. Controls (n = 150) were given saline orally. The inactivated vaccine group was boosted 3 weeks later with the same vaccine. Neutralizing antibodies (NAb) in sera (n = 10) were detected at 19, 22, 30 and 48 weeks of age. NAb were able to neutralize various FAdV serotypes within species D and E. Mean NAb were similar in the both live and killed vaccine groups at 19, 30 and 48 weeks and ranged from 2.4 to 3.7 log10. Approximately 26 ±â€¯7% of MtAbs were passively transferred through eggs to day-old chicks. Progeny challenged with a lethal dose (1 × 107 TCID50/bird intramuscularly) of FAdV-8b-SK, FAdV-11-1047, or FAdV-2-685 (n = 90/group) at 14 days post-hatch (dph) showed 98-100% protection in broiler chicks to homologous or heterologous FAdV challenges. Our data suggests that a bivalent live and an inactivated FAdV vaccine are equally effective and have the potential for the control of IBH.


Assuntos
Galinhas , Hepatite Viral Animal/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas , Hepatite Viral Animal/imunologia , Hepatite Viral Animal/mortalidade , Hepatite Viral Animal/virologia , Imunidade Materno-Adquirida , Imunização , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Eliminação de Partículas Virais
16.
Sci Rep ; 7(1): 3565, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620186

RESUMO

In recent years, emerging strains of pathogenic arthrogenic avian reovirus (ARV) have become a challenge to the chicken industry across USA and Canada causing significant economic impact. In this study, we characterized emerging variant ARV strains and examined their genetic and antigenic relationship with reference strains. We isolated 37 emerging variant ARV strains from tendons of broiler chickens with clinical cases of arthritis/tenosynovitis at commercial farms in Saskatchewan, Canada. Viral characterization using immunocytochemistry, gold-immunolabeling and electron microscopy revealed distinct features characteristic of ARV. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses of the viral Sigma C gene revealed genetic heterogeneity between the field isolates. On phylogenetic analyses, the Sigma C amino acid sequences of the isolates were clustered into four distinct genotypic groups. These ARV field strains were genetically diverse and quite distant from the vaccine and vaccine related field strains. Antibodies produced against a commercial Reo 2177 ® vaccine did not neutralize these variants. Moreover, structure based analysis of the Sigma C protein revealed significant antigenic variability between the cluster groups and the vaccine strains. To the best of our knowledge, this is the first report on the genetic, phenotypic and antigenic characterization of emerging ARVs in Canada.


Assuntos
Artrite Infecciosa/veterinária , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Orthoreovirus Aviário/genética , Orthoreovirus Aviário/imunologia , Infecções por Reoviridae/veterinária , Animais , Biópsia , Canadá/epidemiologia , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Modelos Moleculares , Fenótipo , Filogenia , Polimorfismo de Fragmento de Restrição , Conformação Proteica , Estudos Soroepidemiológicos , Avaliação de Sintomas , Proteínas Virais/química , Proteínas Virais/imunologia
17.
Vaccine ; 35(20): 2716-2722, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28396209

RESUMO

Inclusion body hepatitis (IBH) is an economically important diseases in broiler chicken industry. Several serotypes of fowl adenovirus (FAdV) can cause IBH, among them, serotype FAdV-8b is associated with the majority of the IBH cases in Canada. Here, we evaluated FAdV-8b virus-like particles (VLPs) and recombinant FAdV-8b fiber proteins (expressed in E. coli) as potential broiler-breeder vaccines against IBH. For assessing the immunogenicity of vaccines, we investigated both humoral and cellular immunity. The humoral immune response was evaluated by determining total IgY and virus-neutralizing antibody in serum at 14, 28, 35 and 60days post-immunization (dpi). We examined cellular immunity using flow cytometry by determining CD4:CD8 ratio change in peripheral blood after the booster vaccination. The protective effect of vaccines was tested by challenging 14day-old progeny (n=30/group) carrying maternal antibodies (MtAb) by challenging with virulent FAdV-8b virus (1×107 TCID50, FAdV-8b-SK). Although total IgY levels were comparable in all groups, the neutralizing antibody response in broiler-breeders at 35 and 60 dpi was significantly (p<0.05) higher those vaccinated with FAdV-8b VLPs followed by FAdV-8b fiber compared to fiber-knob. Moreover, vaccines comprised of FAdV-8b VLPs and FAdV-8b fiber rather than FAdV-8b fiber-knob efficiently elicited the cell-mediated immune response as evidenced by a statistically significant (p<0.05) CD8+ T-cell proliferative response in broiler-breeders four days after the booster vaccination. Unlike FAdV-8b fiber-knob, FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders were able to transfer a substantial amount (28.4±9%) of MtAb to their progeny. Challenge revealed that MtAb provided 100% and 82.7% protection in progeny hatched from FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders, respectively. Collectively, our data suggest that FAdV-8b subunit vaccine-induced MtAb efficiently protected progeny against clinical IBH and broiler-breeder vaccination with subunit vaccines is a potential approach to protect against IBH.


Assuntos
Infecções por Adenoviridae/veterinária , Aviadenovirus/imunologia , Proteínas do Capsídeo/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Infecções por Adenoviridae/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Aviadenovirus/genética , Relação CD4-CD8 , Linfócitos T CD8-Positivos/imunologia , Canadá , Proteínas do Capsídeo/genética , Proliferação de Células , Galinhas , Imunoglobulinas/sangue , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
18.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298598

RESUMO

Proteolytic maturation involving cleavage of one nonstructural and six structural precursor proteins including pVIII by adenovirus protease is an important aspect of the adenovirus life cycle. The pVIII encoded by bovine adenovirus 3 (BAdV-3) is a protein of 216 amino acids and contains two potential protease cleavage sites. Here, we report that BAdV-3 pVIII is cleaved by adenovirus protease at both potential consensus protease cleavage sites. Usage of at least one cleavage site appears essential for the production of progeny BAdV-3 virions as glycine-to-alanine mutation of both protease cleavage sites appears lethal for the production of progeny virions. However, mutation of a single protease cleavage site of BAdV-3 pVIII significantly affects the efficient production of infectious progeny virions. Further analysis revealed no significant defect in endosome escape, genome replication, capsid formation, and virus assembly. Interestingly, cleavage of pVIII at both potential cleavage sites appears essential for the production of stable BAdV-3 virions as BAdV-3 expressing pVIII containing a glycine-to-alanine mutation of either of the potential cleavage sites is thermolabile, and this mutation leads to the production of noninfectious virions.IMPORTANCE Here, we demonstrated that the BAdV-3 adenovirus protease cleaves BAdV-3 pVIII at both potential protease cleavage sites. Although cleavage of pVIII at one of the two adenoviral protease cleavage sites is required for the production of progeny virions, the mutation of a single cleavage site of pVIII affects the efficient production of infectious progeny virions. Further analysis indicated that the mutation of a single protease cleavage site (glycine to alanine) of pVIII produces thermolabile virions, which leads to the production of noninfectious virions with disrupted capsids. We thus provide evidence about the requirement of proteolytic cleavage of pVIII for production of infectious progeny virions. We feel that our study has significantly advanced the understanding of the requirement of adenovirus protease cleavage of pVIII.


Assuntos
Proteínas do Capsídeo/metabolismo , Mastadenovirus/enzimologia , Mastadenovirus/metabolismo , Proteólise , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Bovinos , Linhagem Celular , Replicação do DNA , Mastadenovirus/fisiologia , Peptídeo Hidrolases/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral
19.
J Virol ; 90(7): 3661-75, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26792746

RESUMO

UNLABELLED: DDX3 belongs to the DEAD box RNA helicase family and is a multifunctional protein affecting the life cycle of a variety of viruses. However, its role in influenza virus infection is unknown. In this study, we explored the potential role of DDX3 in influenza virus life cycle and discovered that DDX3 is an antiviral protein. Since many host proteins affect virus life cycle by interacting with certain components of the viral machinery, we first verified whether DDX3 has any viral interaction partners. Immunoprecipitation studies revealed NS1 and NP as direct interaction partners of DDX3. Stress granules (SGs) are known to be antiviral and do form in influenza virus-infected cells expressing defective NS1 protein. Additionally, a recent study showed that DDX3 is an important SG-nucleating factor. We thus explored whether DDX3 plays a role in influenza virus infection through regulation of SGs. Our results showed that SGs were formed in infected cells upon infection with a mutant influenza virus lacking functional NS1 (del NS1) protein, and DDX3 colocalized with NP in SGs. We further determined that the DDX3 helicase domain did not interact with NS1 and NP; however, it was essential for DDX3 localization in virus-induced SGs. Knockdown of DDX3 resulted in impaired SG formation and led to increased virus titers. Taken together, our results identified DDX3 as an antiviral protein with a role in virus-induced SG formation. IMPORTANCE: DDX3 is a multifunctional RNA helicase and has been reported to be involved in regulating various virus life cycles. However, its function during influenza A virus infection remains unknown. In this study, we demonstrated that DDX3 is capable of interacting with influenza virus NS1 and NP proteins; DDX3 and NP colocalize in the del NS1 virus-induced SGs. Furthermore, knockdown of DDX3 impaired SG formation and led to a decreased virus titer. Thus, we provided evidence that DDX3 is an antiviral protein during influenza virus infection and its antiviral activity is through regulation of SG formation. Our findings provide knowledge about the function of DDX3 in the influenza virus life cycle and information for future work on manipulating the SG pathway and its components to fight influenza virus infection.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/imunologia , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunoprecipitação , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Proteínas do Nucleocapsídeo , Ligação Proteica , Mapeamento de Interação de Proteínas , Carga Viral
20.
Front Microbiol ; 7: 2119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28082972

RESUMO

Earlier, targeting of DDX3 by few viral proteins has defined its role in mRNA transport and induction of interferon production. This study was conducted to investigate the function of bovine adenovirus (BAdV)-3 pVIII during virus infection. Here, we provided evidence regarding involvement of DDX3 in cap dependent cellular mRNA translation and demonstrated that targeting of DDX3 by adenovirus protein VIII interfered with cap-dependent mRNA translation function of DDX3 in virus infected cells. Adenovirus late protein pVIII interacted with DDX3 in transfected and BAdV-3 infected cells. pVIII inhibited capped mRNA translation in vitro and in vivo by limiting the amount of DDX3 and eIF3. Diminished amount of DDX3 and eIFs including eIF3, eIF4E, eIF4G, and PABP were present in cap binding complex in BAdV-3 infected or pVIII transfected cells with no trace of pVIII in cap binding complex. The total amount of eIFs appeared similar in uninfected or infected cells as BAdV-3 did not appear to degrade eIFs. The co-immunoprecipitation experiments indicated the absence of direct interaction between pVIII and eIF3, eIF4E, or PABP. These data indicate that interaction of pVIII with DDX3 interferes with the binding of eIF3, eIF4E and PABP to the 5' Cap. We conclude that DDX3 promotes cap-dependent cellular mRNA translation and BAdV-3 pVIII inhibits translation of capped cellular mRNA possibly by interfering with the recruitment of eIFs to the capped cellular mRNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...