Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Glia ; 70(1): 196-214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716961

RESUMO

Astroglial excitatory amino acid transporter 2 (EAAT2, GLT-1, and SLC1A2) regulates the duration and extent of neuronal excitation by removing glutamate from the synaptic cleft. Hence, an impairment in EAAT2 function could lead to an imbalanced brain network excitability. Here, we investigated the functional alterations of neuronal and astroglial networks associated with the loss of function in the astroglia predominant eaat2a gene in zebrafish. We observed that eaat2a-/- mutant zebrafish larvae display recurrent spontaneous and light-induced seizures in neurons and astroglia, which coincide with an abrupt increase in extracellular glutamate levels. In stark contrast to this hyperexcitability, basal neuronal and astroglial activity was surprisingly reduced in eaat2a-/- mutant animals, which manifested in decreased overall locomotion. Our results reveal an essential and mechanistic contribution of EAAT2a in balancing brain excitability, and its direct link to epileptic seizures.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Astrócitos/metabolismo , Epilepsia/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo , Peixe-Zebra/metabolismo
2.
Nat Commun ; 10(1): 3830, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444362

RESUMO

Brain activity and connectivity alter drastically during epileptic seizures. The brain networks shift from a balanced resting state to a hyperactive and hypersynchronous state. It is, however, less clear which mechanisms underlie the state transitions. By studying neural and glial activity in zebrafish models of epileptic seizures, we observe striking differences between these networks. During the preictal period, neurons display a small increase in synchronous activity only locally, while the gap-junction-coupled glial network was highly active and strongly synchronized across large distances. The transition from a preictal state to a generalized seizure leads to an abrupt increase in neural activity and connectivity, which is accompanied by a strong alteration in glia-neuron interactions and a massive increase in extracellular glutamate. Optogenetic activation of glia excites nearby neurons through the action of glutamate and gap junctions, emphasizing a potential role for glia-glia and glia-neuron connections in the generation of epileptic seizures.


Assuntos
Encéfalo/fisiopatologia , Comunicação Celular , Excitabilidade Cortical/fisiologia , Epilepsia/fisiopatologia , Convulsões/fisiopatologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Junções Comunicantes/fisiologia , Ácido Glutâmico/metabolismo , Humanos , Microscopia Confocal , Rede Nervosa/citologia , Rede Nervosa/fisiopatologia , Neuroglia/fisiologia , Neurônios/fisiologia , Imagem Óptica , Optogenética , Técnicas de Patch-Clamp , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...