RESUMO
Proteins that are post-translationally adducted with 2-(ω-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others.
Assuntos
Neovascularização Patológica/metabolismo , Pirróis/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Lasers , Leucócitos/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retina/patologia , Receptor 2 Toll-Like/agonistasRESUMO
Retinol-binding protein-4 (RBP4) is an emerging candidate drug target for type 2 diabetes and lipofuscin-mediated macular degeneration. The retinoic acid derivative fenretinide (N-(4-hydroxyphenyl) retinamide; HPR) exerts therapeutic effects in mouse models of obesity, diabetes, and Stargardt's disease by targeting RBP4. Fenretinide competes with retinoids for RBP4 binding, disrupts RBP4-transthyretin (TTR) complexes, and results in urinary secretion of RBP4 and systemic depletion of retinol. To enable the search for nonretinoid molecules with fenretinide-like activities we developed a HTS-compatible homogeneous TR-FRET assay monitoring the displacement of retinoic acid derivatives from RBP4 in high-density 384-well and 1536-well microtiter plate formats. The retinoid displacement assay proved to be highly sensitive and robust after miniaturization with IC(50)s for fenretinide and retinol ranging around 50 and 100 nM, respectively, and Z'-factors around 0.7. In addition, a surface plasmon resonance (SPR)-based secondary assay was developed to interrogate small molecule RBP4 binders for their ability to modulate the RBP4-TTR interaction. Finally, a 1.6 x 10(6) compound library was screened against the retinoid displacement assay. Several potent retinoid competitors were identified that also appeared to disrupt RBP4-TTR complexes. Some of these compounds could potentially serve as valuable tools to further probe RBP4 biology in the future.
Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Pré-Albumina/análise , Retinoides/análise , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , Pré-Albumina/química , Pré-Albumina/metabolismo , Ligação Proteica , Retinoides/química , Retinoides/metabolismo , Fatores de TempoRESUMO
For more than 2 centuries active immunotherapy has been at the forefront of efforts to prevent infectious disease [Waldmann TA (2003) Nat Med 9:269-277]. However, the decreased ability of the immune system to mount a robust immune response to self-antigens has made it more difficult to generate therapeutic vaccines against cancer or chronic degenerative diseases. Recently, we showed that the site-specific incorporation of an immunogenic unnatural amino acid into an autologous protein offers a simple and effective approach to overcome self-tolerance. Here, we characterize the nature and durability of the polyclonal IgG antibody response and begin to establish the generality of p-nitrophenylalanine (pNO(2)Phe)-induced loss of self-tolerance. Mutation of several surface residues of murine tumor necrosis factor-alpha (mTNF-alpha) independently to pNO(2)Phe leads to a T cell-dependent polyclonal and sustainable anti-mTNF-alpha IgG autoantibody response that lasts for at least 40 weeks. The antibodies bind multiple epitopes on mTNF-alpha and protect mice from severe endotoxemia induced by lipopolysaccharide (LPS) challenge. Immunization of mice with a pNO(2)Phe(43) mutant of murine retinol-binding protein (RBP4) also elicited a high titer IgG antibody response, which was cross-reactive with wild-type mRBP4. These findings suggest that this may be a relatively general approach to generate effective immunotherapeutics against cancer-associated or other weakly immunogenic antigens.
Assuntos
Aminoácidos/genética , Imunoterapia/métodos , Engenharia de Proteínas/métodos , Tolerância a Antígenos Próprios/imunologia , Aminoácidos/imunologia , Animais , Formação de Anticorpos , Autoanticorpos , Autoantígenos/genética , Imunoglobulina G , Camundongos , Fenilalanina/análogos & derivados , Fenilalanina/genética , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/genéticaRESUMO
The protein content of melanosomes in the retinal pigment epithelium (RPE) was analyzed by mass spectrometry. More than 100 proteins were found to be common to two out of three variations of sample preparation. Some proteins normally associated with other organelles were detected. Several lysosomal enzymes were detected, with the presence of cathepsin D confirmed by immunoelectron microscopy, thus supporting the previously suggested notion that melanosomes may contribute to the degradation of ingested photoreceptor outer segment disks.
Assuntos
Melanossomas/química , Melanossomas/metabolismo , Epitélio Pigmentado Ocular/química , Proteoma/química , Retina/química , Animais , Células Cultivadas , Células Epiteliais/química , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Espectrometria de Massas , Melanossomas/ultraestrutura , Microscopia Imunoeletrônica , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/ultraestrutura , Proteoma/metabolismo , Retina/citologia , Retina/ultraestrutura , SuínosRESUMO
Myosin VIIa functions in the outer retina, and loss of this function causes human blindness in Usher syndrome type 1B (USH1B). In mice with mutant Myo7a, melanosomes in the retinal pigmented epithelium (RPE) are distributed abnormally. In this investigation we detected many proteins in RPE cells that could potentially participate in melanosome transport, but of those tested, only myosin VIIa and Rab27a were found to be required for normal distribution. Two other expressed proteins, melanophilin and myosin Va, both of which are required for normal melanosome distribution in melanocytes, were not required in RPE, despite the association of myosin Va with the RPE melanosome fraction. Both myosin VIIa and myosin Va were immunodetected broadly in sections of the RPE, overlapping with a region of apical filamentous actin. Some 70-80% of the myosin VIIa in RPE cells was detected on melanosome membranes by both subcellular fractionation of RPE cells and quantitative immunoelectron microscopy, consistent with a role for myosin VIIa in melanosome motility. Time-lapse microscopy of melanosomes in primary cultures of mouse RPE cells demonstrated that the melanosomes move in a saltatory manner, interrupting slow movements with short bursts of rapid movement (>1 RR01183m/second). In RPE cells from Myo7a-null mice, both the slow and rapid movements still occurred, except that more melanosomes underwent rapid movements, and each movement extended approximately five times longer (and further). Hence, our studies demonstrate the presence of many potential effectors of melanosome motility and localization in the RPE, with a specific requirement for Rab27a and myosin VIIa, which function by transporting and constraining melanosomes within a region of filamentous actin. The presence of two distinct melanosome velocities in both control and Myo7a-null RPE cells suggests the involvement of at least two motors other than myosin VIIa in melanosome motility, most probably, a microtubule motor and myosin Va.