Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892216

RESUMO

The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 µM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.


Assuntos
Peptídeos Antimicrobianos , Peptídeos Penetradores de Células , Testes de Sensibilidade Microbiana , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Aminoácidos/química , Desenho de Fármacos , Proteínas Amiloidogênicas/química
2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069046

RESUMO

Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 µM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.


Assuntos
Anti-Infecciosos , Peptídeos Penetradores de Células , Staphylococcus aureus Resistente à Meticilina , Humanos , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas Ribossômicas/farmacologia , Testes de Sensibilidade Microbiana
3.
J Biomed Res ; 37(4): 268-280, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37503710

RESUMO

The role of reactive oxygen species (ROS) in ischemic and reperfusion (I/R) injury of the heart has been discussed for more than 40 years. It has been demonstrated that reperfusion triggers a multiple increase in free radical generation in the isolated heart. Antioxidants were found to have the ability to mitigate I/R injury of the heart. However, it is unclear whether their cardioprotective effect truly depends on the decrease of ROS levels in myocardial tissues. Since high doses and high concentrations of antioxidants were experimentally used, it is highly likely that the cardioprotective effect of antioxidants depends on their interaction not only with free radicals but also with other molecules. It has been demonstrated that the antioxidant N-2-mercaptopropionyl glycine or NDPH oxidase knockout abolished the cardioprotective effect of ischemic preconditioning. Consequently, there is evidence that ROS protect the heart against the I/R injury.

4.
Pharmaceutics ; 15(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986889

RESUMO

In-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is 5-6%. Consequently, it is necessary to develop fundamentally novel drugs capable of reducing mortality in patients with acute myocardial infarction. Apelins could be the prototype for such drugs. Chronic administration of apelins mitigates adverse myocardial remodeling in animals with myocardial infarction or pressure overload. The cardioprotective effect of apelins is accompanied by blockage of the MPT pore, GSK-3ß, and the activation of PI3-kinase, Akt, ERK1/2, NO-synthase, superoxide dismutase, glutathione peroxidase, matrix metalloproteinase, the epidermal growth factor receptor, Src kinase, the mitoKATP channel, guanylyl cyclase, phospholipase C, protein kinase C, the Na+/H+ exchanger, and the Na+/Ca2+ exchanger. The cardioprotective effect of apelins is associated with the inhibition of apoptosis and ferroptosis. Apelins stimulate the autophagy of cardiomyocytes. Synthetic apelin analogues are prospective compounds for the development of novel cardioprotective drugs.

5.
Membranes (Basel) ; 13(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676870

RESUMO

The search for novel drugs for the treatment of acute myocardial infarction and reperfusion injury of the heart is an urgent aim of modern pharmacology. Opioid peptides could be such potential drugs in this area. However, the molecular mechanism of the infarct-limiting effect of opioids in reperfusion remains unexplored. The objective of this research was to study the signaling mechanisms of the cardioprotective effect of deltorphin II in reperfusion. Rats were subjected to coronary artery occlusion (45 min) and reperfusion (2 h). The ratio of infarct size/area at risk was determined. This study indicated that the cardioprotective effect of deltorphin II in reperfusion is mediated via the activation of peripheral δ2 opioid receptor (OR), which is most likely localized in cardiomyocytes. We studied the role of guanylyl cyclase, protein kinase Cδ (PKCδ), phosphatidylinositol-3-kinase (PI3-kinase), extracellular signal-regulated kinase-1/2 (ERK1/2-kinase), ATP-sensitive K+-channels (KATP channels), mitochondrial permeability transition pore (MPTP), NO synthase (NOS), protein kinase A (PKA), Janus 2 kinase, AMP-activated protein kinase (AMPK), the large conductance calcium-activated potassium channel (BKCa-channel), reactive oxygen species (ROS) in the cardioprotective effect of deltorphin II. The infarct-reducing effect of deltorphin II appeared to be mediated via the activation of PKCδ, PI3-kinase, ERK1/2-kinase, sarcolemmal KATP channel opening, and MPTP closing.

6.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628272

RESUMO

Antibiotic-resistant bacteria are recognized as one of the leading causes of death in the world. We proposed and successfully tested peptides with a new mechanism of antimicrobial action "protein silencing" based on directed co-aggregation. The amyloidogenic antimicrobial peptide (AAMP) interacts with the target protein of model or pathogenic bacteria and forms aggregates, thereby knocking out the protein from its working condition. In this review, we consider antimicrobial effects of the designed peptides on two model organisms, E. coli and T. thermophilus, and two pathogenic organisms, P. aeruginosa and S. aureus. We compare the amino acid composition of proteomes and especially S1 ribosomal proteins. Since this protein is inherent only in bacterial cells, it is a good target for studying the process of co-aggregation. This review presents a bioinformatics analysis of these proteins. We sum up all the peptides predicted as amyloidogenic by several programs and synthesized by us. For the four organisms we studied, we show how amyloidogenicity correlates with antibacterial properties. Let us especially dwell on peptides that have demonstrated themselves as AMPs for two pathogenic organisms that cause dangerous hospital infections, and in which the minimal inhibitory concentration (MIC) turned out to be comparable to the MIC of gentamicin sulfate. All this makes our study encouraging for the further development of AAMP. The hybrid peptides may thus provide a starting point for the antibacterial application of amyloidogenic peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus
7.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008951

RESUMO

The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Proteínas de Bactérias/química , Proteínas Ribossômicas/química , Staphylococcus aureus , Sequência de Aminoácidos , Proteínas Amiloidogênicas/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Relação Dose-Resposta a Droga , Fibroblastos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Staphylococcus aureus/efeitos dos fármacos
8.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835893

RESUMO

Under certain conditions, many proteins/peptides are capable of self-assembly into various supramolecular formations: fibrils, films, amyloid gels. Such formations can be associated with pathological phenomena, for example, with various neurodegenerative diseases in humans (Alzheimer's, Parkinson's and others), or perform various functions in the body, both in humans and in representatives of other domains of life. Recently, more and more data have appeared confirming the ability of many known and, probably, not yet studied proteins/peptides, to self-assemble into quaternary structures. Fibrils, biofilms and amyloid gels are promising objects for the developing field of research of nanobiotechnology. To develop methods for obtaining nanobiomaterials with desired properties, it is necessary to study the mechanism of such structure formation, as well as the influence of various factors on this process. In this work, we present the results of a study of the structure of biogels formed by four 10-membered amyloidogenic peptides: the VDSWNVLVAG peptide (AspNB) and its analogue VESWNVLVAG (GluNB), which are amyloidogenic fragments of the glucantransferase Bgl2p protein from a yeast cell wall, and amyloidogenic peptides Aß(31-40), Aß(33-42) from the Aß(1-42) peptide. Based on the analysis of the data, we propose a possible mechanism for the formation of amyloid gels with these peptides.

9.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575940

RESUMO

The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.


Assuntos
Proteínas Amiloidogênicas/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Ribossômicas/genética , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/farmacologia , Proteínas Amiloidogênicas/ultraestrutura , Antibacterianos/efeitos adversos , Humanos , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/patogenicidade , Proteínas Ribossômicas/farmacologia , Proteínas Ribossômicas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...