RESUMO
BACKGROUND: Corynebacterium auriscanis is a bacterial species frequently isolated from dogs with external otitis or dermatitis and a zoonotic pathogen transmitted by dog bite. It is considered an opportunistic pathogen, but its pathogenicity mechanisms are poorly studied. Comparative genomics can identify virulence and niche factors that could contribute to understanding its lifestyle. OBJECTIVES: The objectives of this project was to compare genomes of C. auriscanis to identify genes related to its virulence and lifestyle. METHODS: The genome of strain 32 was sequenced using Illumina HiSeq 2500 (Illumina, CA, USA) and assembled using Unicycler. The two other non-redundant genomes from the same species available in GenBank were included in the analysis. All genomes were annotated and checked for taxonomy, assembly quality, mobile elements, CRISPR-Cas systems, and virulence and antimicrobial resistance genes. The virulence genes in the three genomes were compared to the ones from other pathogens commonly isolated with C. auriscanis. FINDINGS: The species has 42 virulence factors that can be classified as niche factors, due to the absence of true virulence factors found in primary pathogens. The gene rbpA could confer basal levels of resistance to rifampin. MAIN CONCLUSIONS: The absence of true virulence factors in the three genomes suggests C. auriscanis has an opportunistic pathogen lifestyle.
Assuntos
Corynebacterium , Genoma Bacteriano , Genômica , Fatores de Virulência , Corynebacterium/genética , Corynebacterium/classificação , Corynebacterium/isolamento & purificação , Corynebacterium/patogenicidade , Genoma Bacteriano/genética , Fatores de Virulência/genética , Animais , Cães , Virulência/genética , Infecções por Corynebacterium/microbiologiaRESUMO
Microbial biofilms constitute a significant virulence factor and a substantial challenge in clinical environments due to their role in promoting antimicrobial resistance and their resilience to eradication efforts. Methicillin-resistant Staphylococcus aureus (MRSA) infections substantially increase healthcare costs, extend hospitalizations, and elevate morbidity and mortality rates. Therefore, developing innovative strategies to target and eliminate these bacteria and their biofilms effectively is imperative for robust epidemiological control. In this study, we evaluated the antibacterial and antibiofilm activities of cell-free supernatant (CFS) obtained from the Bacillus velezensis 1273 strain culture. Our data showed that CFS inhibited the growth of S. aureus ATCC 29213 and MRSA (clinical strain), with greater efficacy observed against S. aureus (1:16 dilution). Furthermore, CFS showed substantial potential in reducing biofilm formation in both strains (â¼30 %) at subinhibitory concentrations. Additionally, the antibacterial activity against biofilm-formed cells showed that pure CFS treatment decreased the viability of S. aureus (60 %) and MRSA (45 %) sessile cells. We further demonstrated that CFS treatment induces the production of reactive oxygen species (ROS) and damages the membranes and cell walls of the pathogen cells. Genome analysis revealed the presence of genes encoding bacteriocins and secondary metabolites with antibacterial activity in the B. velezensis 1273 genome. These findings highlight the potential of probiotic bacterial metabolites as antibiofilm and anti-multidrug-resistant pathogens.
RESUMO
Staphylococcus pseudintermedius is frequently associated with several bacterial infections in dogs, highlighting a One Health concern due to the zoonotic potential. Given the clinical significance of this pathogen, we performed comprehensive genomic analyses of 28 S. pseudintermedius strains isolated from canine infections throughout whole-genome sequencing using Illumina HiSeq, and compared the genetic features between S. pseudintermedius methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains. Our analyses determined that MRSP genomes are larger than MSSP strains, with significant changes in antimicrobial resistance genes and virulent markers, suggesting differences in the pathogenicity of MRSP and MSSP strains. In addition, the pangenome analysis of S. pseudintermedius from canine and human origins identified core and accessory genomes with 1847 and 3037 genes, respectively, which indicates that most of the S. pseudintermedius genome is highly variable. Furthermore, phylogenomic analysis clearly separated MRSP from MSSP strains, despite their infection sites, showing phylogenetic differences according to methicillin susceptibility. Altogether our findings underscore the importance of studying the evolutionary dynamics of S. pseudintermedius, which is crucial for the development of effective prevention and control strategies of resistant S. pseudintermedius infections.
RESUMO
Whole-genome sequencing identified three previously unidentified multilocus sequence types of Campylobacter jejuni (ST-12332) and Campylobacter coli (ST-12333 and ST-12663), harboring resistance genes for multiple antimicrobial classes. The sources of isolation highlight the circulation of resistance strains within animals and humans, emphasizing the need for preventive measures.
RESUMO
Bacterial spores in materials and equipment pose significant biosecurity risks, making effective disinfection crucial. This study evaluated Ortho-phthalaldehyde (OPA) and a quaternary ammonia-glutaraldehyde solution (AG) for inactivating spores of Bacillus thuringiensis (BT), B. cereus (BC), and two strains of B. velezensis (BV1 and BV2). Spores of BV1 and BT were treated with 22.5 mg/m3 OPA by dry fumigation or 1 mg/mL AG by spray for 20 min, according to the manufacturer's recommendation. As no sporicidal effect was observed, OPA was tested at 112.5 mg/m3 for 40 min, showing effectiveness for BT but not for BV1. Minimum bactericidal concentration (MBC) tests revealed higher MBC values for glutaraldehyde, prompting an overnight test with 112.5 mg/m3 OPA by dry fumigation and 50 mg/mL AG by spray, using formaldehyde as a control. AG reduced all Bacillus strains, but with limited sporicidal effect. OPA was sporicidal for BT and BV1 but not for BC and BV2, indicating a strain-dependent effect. Formaldehyde performed better overall but did not completely inactivate BV2 spores. Our findings suggest that OPA and AG have potential as formaldehyde replacements in wet disinfection procedures.
Assuntos
Bacillus thuringiensis , Bacillus , Desinfetantes , Glutaral , Esporos Bacterianos , Desinfetantes/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Bacillus/efeitos dos fármacos , Bacillus/fisiologia , Glutaral/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/fisiologia , Testes de Sensibilidade Microbiana , o-Ftalaldeído/farmacologia , Bacillus cereus/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Desinfecção/métodosRESUMO
AIMS: Biofilms are complex microbial cell aggregates that attach to different surfaces in nature, industrial environments, or hospital settings. In photovoltaic panels (PVs), biofilms are related to significant energy conversion losses. In this study, our aim was to characterize the communities of microorganisms and the genes involved in biofilm formation. METHODS AND RESULTS: In this study, biofilm samples collected from a PV system installed in southeastern Brazil were analyzed through shotgun metagenomics, and the microbial communities and genes involved in biofilm formation were investigated. A total of 2030 different genera were identified in the samples, many of which were classified as extremophiles or producers of exopolysaccharides. Bacteria prevailed in the samples (89%), mainly the genera Mucilaginibacter, Microbacterium, Pedobacter, Massilia, and Hymenobacter. The functional annotation revealed >12 000 genes related to biofilm formation and stress response. Genes involved in the iron transport and synthesis of c-di-GMP and c-AMP second messengers were abundant in the samples. The pathways related to these components play a crucial role in biofilm formation and could be promising targets for preventing biofilm formation in the PV. In addition, Raman spectroscopy analysis indicated the presence of hematite, goethite, and ferrite, consistent with the mineralogical composition of the regional soil and metal-resistant bacteria. CONCLUSIONS: Taken together, our findings reveal that PV biofilms are a promising source of microorganisms of industrial interest and genes of central importance in regulating biofilm formation and persistence.
Assuntos
Bactérias , Biofilmes , Biofilmes/crescimento & desenvolvimento , Brasil , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Metagenômica , Compostos Férricos/metabolismo , Microbiota , Minerais/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Compostos de FerroRESUMO
Amelogenesis imperfecta (AI) is a genetic disease characterized by poor formation of tooth enamel. AI occurs due to mutations, especially in AMEL, ENAM, KLK4, MMP20, and FAM83H, associated with changes in matrix proteins, matrix proteases, cell-matrix adhesion proteins, and transport proteins of enamel. Due to the wide variety of phenotypes, the diagnosis of AI is complex, requiring a genetic test to characterize it better. Thus, there is a demand for developing low-cost, noninvasive, and accurate platforms for AI diagnostics. This case-control pilot study aimed to test salivary vibrational modes obtained in attenuated total reflection fourier-transformed infrared (ATR-FTIR) together with machine learning algorithms: linear discriminant analysis (LDA), random forest, and support vector machine (SVM) could be used to discriminate AI from control subjects due to changes in salivary components. The best-performing SVM algorithm discriminates AI better than matched-control subjects with a sensitivity of 100%, specificity of 79%, and accuracy of 88%. The five main vibrational modes with higher feature importance in the Shapley Additive Explanations (SHAP) were 1010 cm-1, 1013 cm-1, 1002 cm-1, 1004 cm-1, and 1011 cm-1 in these best-performing SVM algorithms, suggesting these vibrational modes as a pre-validated salivary infrared spectral area as a potential biomarker for AI screening. In summary, ATR-FTIR spectroscopy and machine learning algorithms can be used on saliva samples to discriminate AI and are further explored as a screening tool.
Assuntos
Amelogênese Imperfeita , Aprendizado de Máquina , Saliva , Humanos , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/metabolismo , Saliva/metabolismo , Saliva/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Feminino , Estudos de Casos e Controles , Masculino , Algoritmos , Adulto , Máquina de Vetores de Suporte , Projetos Piloto , Análise Discriminante , Biomarcadores , Triagem/métodos , Adolescente , Adulto JovemRESUMO
Cases of diphtheria, even in immunized individuals, are still reported in several parts of the world, including in Brazil. New outbreaks occur in Europe and other continents. In this context, studies on Corynebacterium diphtheriae infections are highly relevant, both for a better understanding of the pathogenesis of the disease and for controlling the circulation of clones and antimicrobial resistance genes. Here we present a case of cutaneous infection by multidrug-resistant Corynebacterium diphtheriae and provide its whole-genome sequencing. Genomic analysis revealed resistance genes, including tet(W), sul1, cmx, rpoB2, rbpA and mutation in rpoB. We performed phylogenetic analyzes and used the BRIG to compare the predicted resistance genes with those found in genomes from other significant isolates, including those associated with some outbreaks. Virulence factors such as spaD, srtBC, spaH, srtDE, surface-anchored pilus proteins (sapD), nonfimbrial adhesins (DIP0733, DIP1281, and DIP1621), embC and mptC (putatively involved in CdiLAM), sigA, dtxR and MdbA (putatively involved) in post-translational modification, were detected. We identified the CRISPR-Cas system in our isolate, which was classified as Type II-U based on the database and contains 15 spacers. This system functions as an adaptive immune mechanism. The strain was attributed to a new sequence type ST-928, and phylogenetic analysis confirmed that it was related to ST-634 of C. diphtheriae strains isolated in French Guiana and Brazil. In addition, since infections are not always reported, studies with the sequence data might be a way to complement and inform C. diphtheriae surveillance.
Assuntos
Sistemas CRISPR-Cas , Corynebacterium diphtheriae , Rifampina , Fatores de Virulência , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/patogenicidade , Corynebacterium diphtheriae/efeitos dos fármacos , Humanos , Fatores de Virulência/genética , Rifampina/farmacologia , Mutação , Filogenia , Difteria/microbiologia , Genoma Bacteriano , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
Although diphtheria is a vaccine-preventable disease, numerous cases are still reported around the world, as well as outbreaks in countries, including European ones. Species of the Corynebacterium diphtheriae complex are potentially toxigenic and, therefore, must be considered given the possible consequences, such as the circulation of clones and transmission of antimicrobial resistance and virulence genes. Recently, Corynebacterium rouxii was characterized and included among the valid species of the complex. Therefore, two cases of C. rouxii infection arising from infections in domestic animals are presented here. We provide molecular characterization, phylogenetic analyses, genome sequencing, and CRISPR-Cas analyses to contribute to a better understanding of the molecular bases, pathogenesis, and epidemiological monitoring of this species, which is still little studied. We confirmed its taxonomic position with genome sequencing and in silico analysis and identified the ST-918 for both strains. The clinical isolates were sensitive resistance to benzylpenicillin and rifampin. Antimicrobial resistance genes, including tetB, rpoB2, and rbpA genes, were predicted. The bla and ampC genes were not found. Several virulence factors were also detected, including adhesion, iron uptake systems, gene regulation (dtxR), and post-translational modification (MdbA). Finally, one prophage and the Type I-E CRISPR-Cas system were identified.
Assuntos
Antibacterianos , Infecções por Corynebacterium , Corynebacterium , Doenças do Cão , Filogenia , Rifampina , Animais , Corynebacterium/genética , Corynebacterium/efeitos dos fármacos , Doenças do Cão/microbiologia , Cães , Rifampina/farmacologia , Infecções por Corynebacterium/veterinária , Infecções por Corynebacterium/microbiologia , Antibacterianos/farmacologia , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Penicilinas/farmacologiaRESUMO
Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1ß, TGFß, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1ß levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.
Assuntos
Anti-Inflamatórios , Modelos Animais de Doenças , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Microbioma Gastrointestinal/efeitos dos fármacos , Citocinas/metabolismo , Proteínas de Bactérias/farmacologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Probióticos/farmacologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Colo/patologia , Colo/microbiologia , Colo/metabolismo , MasculinoRESUMO
BACKGROUND: Fungi play a key role in several important ecological functions, ranging from organic matter decomposition to symbiotic associations with plants. Moreover, fungi naturally inhabit the human body and can be beneficial when administered as probiotics. In mycology, the internal transcribed spacer (ITS) region was adopted as the universal marker for classifying fungi. Hence, an accurate and robust method for ITS classification is not only desired for the purpose of better diversity estimation, but it can also help us gain a deeper insight into the dynamics of environmental communities and ultimately comprehend whether the abundance of certain species correlate with health and disease. Although many methods have been proposed for taxonomic classification, to the best of our knowledge, none of them fully explore the taxonomic tree hierarchy when building their models. This in turn, leads to lower generalization power and higher risk of committing classification errors. RESULTS: Here we introduce HiTaC, a robust hierarchical machine learning model for accurate ITS classification, which requires a small amount of data for training and can handle imbalanced datasets. HiTaC was thoroughly evaluated with the established TAXXI benchmark and could correctly classify fungal ITS sequences of varying lengths and a range of identity differences between the training and test data. HiTaC outperforms state-of-the-art methods when trained over noisy data, consistently achieving higher F1-score and sensitivity across different taxonomic ranks, improving sensitivity by 6.9 percentage points over top methods in the most noisy dataset available on TAXXI. CONCLUSIONS: HiTaC is publicly available at the Python package index, BIOCONDA and Docker Hub. It is released under the new BSD license, allowing free use in academia and industry. Source code and documentation, which includes installation and usage instructions, are available at https://gitlab.com/dacs-hpi/hitac .
Assuntos
Fungos , Aprendizado de Máquina , Fungos/genética , Fungos/classificação , DNA Espaçador Ribossômico/genética , SoftwareRESUMO
Lactobacillus delbrueckii, a widely used lactic acid bacterium in the food industry, has been studied for its probiotic properties and reservoir of antibiotic-resistant genes, raising safety concerns for probiotic formulations and fermented products. This review consolidates findings from 60 articles published between 2012 and 2023, focusing on the global antibiotic resistance profile and associated genetic factors in L. delbrueckii strains. Resistance to aminoglycosides, particularly streptomycin, kanamycin, and gentamicin, as well as resistance to glycopeptides (vancomycin), fluoroquinolones (ciprofloxacin), and tetracyclines was predominant. Notably, although resistance genes have been identified, they have not been linked to mobile genetic elements, reducing the risk of dissemination. However, a significant limitation is the insufficient exploration of responsible genes or mobile elements in 80% of studies, hindering safety assessments. Additionally, most articles originated from Asian and Middle Eastern countries, with strains often isolated from fermented dairy foods. Therefore, these findings underscore the necessity for comprehensive analyses of new strains of L. delbrueckii for potential industrial and biotherapeutic applications and in combating the rise of antibiotic-resistant pathogens.
Assuntos
Antibacterianos , Lactobacillus delbrueckii , Probióticos , Probióticos/farmacologia , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Indústria Alimentícia , Microbiologia de Alimentos , Alimentos Fermentados/microbiologiaRESUMO
INTRODUCTION: Serratia marcescens is an opportunistic pathogen found ubiquitously in the environment and associated with a wide range of nosocomial infections. This multidrug-resistant bacterium has been a cause of concern for hospitals and healthcare facilities due to its ability to spread rapidly and cause outbreaks. Next generation sequencing genotyping of bacterial isolates has proven to be a valuable tool for tracking the spread and transmission of nosocomial infections. This has allowed for the identification of outbreaks and transmission chains, as well as determining whether cases are due to endogenous or exogenous sources. Evidence of nosocomial transmission has been gathered through genotyping methods. The aim of this study was to investigate the genetic diversity of carbapenemase-producing S. marcescens in an outbreak at a public hospital in Cuiaba, MT, Brazil. METHODOLOGY: Ten isolates of S. marcenses were sequenced and antibiotic resistance profiles analyzed over 12 days. RESULTS: The isolates were clonal and multidrug resistant. Gentamycin and tigecycline had sensitivity in 90% and 80% isolates, respectively. Genomic analysis identified several genes that encode ß-lactamases, aminoglycoside-modifying enzymes, efflux pumps, and other virulence factors. CONCLUSIONS: Systematic surveillance is crucial in monitoring the evolution of S. marcescens genotypes, as it can lead to early detection and prevention of outbreaks.
Assuntos
Antibacterianos , Infecção Hospitalar , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla , Unidades de Terapia Intensiva , Infecções por Serratia , Serratia marcescens , Sequenciamento Completo do Genoma , Serratia marcescens/genética , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/isolamento & purificação , Humanos , Brasil/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Serratia/microbiologia , Infecções por Serratia/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Genótipo , Genoma Bacteriano , beta-Lactamases/genética , Variação GenéticaRESUMO
Aim: To investigate different approaches to RA treatment that might lead to greater efficacy and better safety profiles. Methods: The Search strategy was based on medical subject headings, and screening and selection were based on inclusion/exclusion criteria. Results & discussion: Early therapy is critical for disease control and loss of bodily function. The most promising outcomes came from the development of disease-modifying anti-rheumatic drugs. Different foods have anti-inflammatory and antioxidant qualities that protect against the development of rheumatoid arthritis (RA). Some dietary patterns and supplements have been shown to have potential protective benefits against RA. Conclusion: Improvement in the quality of life of RA patients requires a tailored management approach based on the current patient medical data.
Rheumatoid arthritis is a complex disease with an unclear origin that affects the joints. In this systematic review, we aimed to investigate different effective ways of treating rheumatoid arthritis. Study results indicate that rheumatoid arthritis treatment requires coordination between different healthcare teams. As much as we can, when we start disease treatment early, this will lead to a better disease cure. Different drugs showed promising results in the treatment of rheumatoid arthritis, but the most promising treatment results came from a group of medicinal agents called 'disease-modifying anti-rheumatic drugs'. Different foods have anti-inflammatory and antioxidant effect and help in protection against rheumatoid arthritis, but others, such as red meat and salt, have the opposite effect. Some dietary patterns and supplements, such as the Mediterranean Diet, vitamin D and probiotics, have been shown to have potential protective benefits against rheumatoid arthritis. Improvement in the quality of patient life requires an individualized management roadmap based on current patient medical data.
RESUMO
Chemotherapy-induced intestinal mucositis is a major side effect of cancer treatment. Statins are 3-hydroxy-3-methyl glutaryl coenzyme reductase inhibitors used to treat hypercholesterolemia and atherosclerotic diseases. Recent studies have demonstrated that atorvastatin (ATV) has antioxidant, anti-inflammatory, and resulting from the regulation of different molecular pathways. In the present study, we investigated the effects of ATV on intestinal homeostasis in 5-fluorouracil (5-FU)-induced mucositis. Our results showed that ATV protected the intestinal mucosa from epithelial damage caused by 5-FU mainly due to inflammatory infiltrate and intestinal permeability reduction, downregulation of inflammatory markers, such as Tlr4, MyD88, NF-κB, Tnf-a, Il1ß, and Il6 dose-dependent. ATV also improved epithelial barrier function by upregulating the mRNA transcript levels of mucin 2 (MUC2), and ZO-1 and occludin tight junction proteins. The results suggest that the ATV anti-inflammatory and protective effects on 5-FU-induced mice mucositis involve the inhibition of the TLR4/MYD88/NPRL3/NF-κB, iNos, and caspase 3.
RESUMO
Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.
Assuntos
Colite , Produtos Fermentados do Leite , Sulfato de Dextrana , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/tratamento farmacológico , Lactobacillus delbrueckii/metabolismo , Produtos Fermentados do Leite/microbiologia , Camundongos , Probióticos/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Inflamação , Colo/microbiologia , Colo/metabolismo , LactobacillusRESUMO
Trametes villosa is a remarkable white-rot fungus (WRF) with the potential to be applied in lignocellulose conversion to obtain chemical compounds and biofuels. Lignocellulose breakdown by WRF is carried out through the secretion of oxidative and hydrolytic enzymes. Despite the existing knowledge about this process, the complete molecular mechanisms involved in the regulation of this metabolic system have not yet been elucidated. Therefore, in order to understand the genes and metabolic pathways regulated during lignocellulose degradation, the strain T. villosa CCMB561 was cultured in media with different carbon sources (lignin, sugarcane bagasse, and malt extract). Subsequently, biochemical assays and differential gene expression analysis by qPCR and high-throughput RNA sequencing were carried out. Our results revealed the ability of T. villosa CCMB561 to grow on lignin (AL medium) as the unique carbon source. An overexpression of Cytochrome P450 was detected in this medium, which may be associated with the lignin O-demethylation pathway. Clusters of up-regulated CAZymes-encoding genes were identified in lignin and sugarcane bagasse, revealing that T. villosa CCMB561 acts simultaneously in the depolymerization of lignin, cellulose, hemicellulose, and pectin. Furthermore, genes encoding nitroreductases and homogentisate-1,2-dioxygenase that act in the degradation of organic pollutants were up-regulated in the lignin medium. Altogether, these findings provide new insights into the mechanisms of lignocellulose degradation by T. villosa and confirm the ability of this fungal species to be applied in biorefineries and in the bioremediation of organic pollutants.
RESUMO
The bacterial composition of and the circulation of antimicrobial resistance genes (ARGs) in waste from Brazilian swine farms are still poorly understood. Considering that antimicrobial resistance (AMR) is one of the main threats to human, animal, and environmental health, the need to accurately assess the load of ARGs released into the environment is urgent. Therefore, this study aimed to characterize the microbiota in a swine farm in southern Brazil and the resistome in swine farm wastewater treated in a series of waste stabilization ponds (WSPs). Samples were collected from farm facilities and the surrounding environment, representing all levels of swine manure within the treatment system. Total metagenomic sequencing was performed on samples from WSPs, and 16S-rDNA sequencing was performed on all the collected samples. The results showed increased bacterial diversity in WSPs, characterized by the presence of Caldatribacteriota, Cloacimonadota, Desulfobacterota, Spirochaetota, Synergistota, and Verrucomicrobiota. Furthermore, resistance genes to tetracyclines, lincosamides, macrolides, rifamycin, phenicol, and genes conferring multidrug resistance were detected in WSPs samples. Interestingly, the most abundant ARG was linG, which confers resistance to the lincosamides. Notably, genes conferring macrolide (mphG and mefC) and rifamycin (rpoB_RIF) resistance appeared in greater numbers in the late WSPs. These drugs are among the high-priority antibiotic classes for human health. Moreover, certain mobile genetic elements (MGEs) were identified in the samples, notably tnpA, which was found in high abundance. These elements are of particular concern due to their potential to facilitate the dissemination of ARGs among bacteria. In summary, the results indicate that, in the studied farm, the swine manure treatment system could not eliminate ARGs and MGEs. Our results validate concerns about Brazil's swine production system. The misuse and overuse of antimicrobials during animal production must be avoided to mitigate AMR.
Assuntos
Antibacterianos , Bactérias , Farmacorresistência Bacteriana , Fazendas , Animais , Suínos , Brasil , Bactérias/genética , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Genes Bacterianos , Águas Residuárias/microbiologia , Esterco/microbiologia , Microbiota/efeitos dos fármacos , Microbiota/genéticaRESUMO
The poultry industry faces significant challenges in controlling Salmonella contamination while reducing antibiotic use, particularly with the emergence of Salmonella Heidelberg (SH) strains posing risks to food safety and public health. Probiotics, notably lactic acid bacteria (LAB) and Saccharomyces boulardii (SB) offer promising alternatives for mitigating Salmonella colonization in broilers. Understanding the efficacy of probiotics in combating SH and their impact on gut health and metabolism is crucial for improving poultry production practices and ensuring food safety standards. This study aimed to assess the inhibitory effects of LAB and SB against SH both in vitro and in vivo broilers, while also investigating their impact on fecal metabolites and caecal microbiome composition. In vitro analysis demonstrated strong inhibition of SH by certain probiotic strains, such as Lactiplantibacillus plantarum (LP) and Lacticaseibacillus acidophilus (LA), while others like SB and Lactobacillus delbrueckii (LD) did not exhibit significant inhibition. In vivo testing revealed that broilers receiving probiotics had significantly lower SH concentrations in cecal content compared to the positive control (PC) at all ages, indicating a protective effect of probiotics against SH colonization. Metagenomic analysis of cecal-content microbiota identified predominant bacterial families and genera, highlighting changes in microbiota composition with age and probiotic supplementation. Additionally, fecal metabolomics profiling showed alterations in metabolite concentrations, suggesting reduced oxidative stress, intestinal inflammation, and improved gut health in probiotic-supplemented birds. These findings underscore the potential of probiotics to mitigate SH colonization and improve broiler health while reducing reliance on antibiotics.
Assuntos
Galinhas , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Probióticos , Saccharomyces boulardii , Salmonelose Animal , Animais , Galinhas/fisiologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Saccharomyces boulardii/fisiologia , Salmonella enterica/fisiologia , Ração Animal/análise , Lactobacillales/fisiologia , Fezes/microbiologia , Fezes/química , Dieta/veterinária , MasculinoRESUMO
Introduction and objective: p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods: This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion: No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.