Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Rofo ; 2024 Jul 25.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-39053502

RESUMO

Investigation of motivation and identification of success factors in radiology research in Germany.Using a German online survey (54 questions, period: 3.5 months), demographic aspects, intrinsic and extrinsic success characteristics, as well as personal and organizational success factors were surveyed based on a career success model. The survey results were reported descriptively. The correlations between success factors and success characteristics were examined using linear, binary-logistic, and multinomial regression models.176 people (164 academically active, 10 not academically active) answered the survey. Most participants (80%, 139/174) worked at a university hospital. 32% had privatdozent or professor as their highest academic title (56/173). The researchers' main motivation was intrinsic interest in research (55%, 89/163), followed by a desire to increase their own career opportunities (25%, 41/163). The following were identified as factors for intrinsic success: i) support from department management (estimate=ß=0.26, p<0.001), ii) good work-life balance (ß=0.37, p<0.001), and iii) the willingness to pursue science even after reaching the career goal (ß=0.16, p<0.016). Relevant factors for extrinsic scientific success were mentoring, protected research time, and activities in professional societies.Researchers in German radiology are mainly intrinsically motivated. Factors known from the literature that determine intrinsic and extrinsic scientific success were confirmed in this study. Knowledge of these factors allows targeted systematic support and could thus increase scientific success in German radiology. · Main motivation for German radiology research is intrinsic interest, followed by career opportunities.. · Factors for intrinsic scientific success are good work-life balance and support by department management.. · Factors for extrinsic scientific success are mentoring, activities in professional societies, and protected research time.. · Wegner F, Heinrichs H, Stahlmann K et al. Motivation and success factors in radiological research in Germany - results of a survey by the Methodology and Research Working Group of the German Radiological Society. Fortschr Röntgenstr 2024; DOI 10.1055/a-2350-0023.

3.
Nat Immunol ; 25(3): 432-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409259

RESUMO

Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.


Assuntos
Astrócitos , Esclerose Múltipla , Animais , Humanos , Camundongos , Anti-Inflamatórios , Modelos Animais de Doenças , Epigênese Genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Inflamação , Proteômica
4.
Nat Immunol ; 25(4): 682-692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396288

RESUMO

Fibroblasts are important regulators of inflammation, but whether fibroblasts change phenotype during resolution of inflammation is not clear. Here we use positron emission tomography to detect fibroblast activation protein (FAP) as a means to visualize fibroblast activation in vivo during inflammation in humans. While tracer accumulation is high in active arthritis, it decreases after tumor necrosis factor and interleukin-17A inhibition. Biopsy-based single-cell RNA-sequencing analyses in experimental arthritis show that FAP signal reduction reflects a phenotypic switch from pro-inflammatory MMP3+/IL6+ fibroblasts (high FAP internalization) to pro-resolving CD200+DKK3+ fibroblasts (low FAP internalization). Spatial transcriptomics of human joints indicates that pro-resolving niches of CD200+DKK3+ fibroblasts cluster with type 2 innate lymphoid cells, whereas MMP3+/IL6+ fibroblasts colocalize with inflammatory immune cells. CD200+DKK3+ fibroblasts stabilized the type 2 innate lymphoid cell phenotype and induced resolution of arthritis via CD200-CD200R1 signaling. Taken together, these data suggest a dynamic molecular regulation of the mesenchymal compartment during resolution of inflammation.


Assuntos
Artrite , Imunidade Inata , Humanos , Metaloproteinase 3 da Matriz , Interleucina-6/metabolismo , Linfócitos/metabolismo , Inflamação/metabolismo , Fibroblastos/metabolismo
5.
Int J Nanomedicine ; 19: 1645-1666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406599

RESUMO

Purpose: In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods: The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results: Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion: Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.


Assuntos
Aterosclerose , Compostos Férricos , Ferrocianetos , Nanopartículas de Magnetita , Placa Aterosclerótica , Coelhos , Ratos , Animais , Meios de Contraste/química , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Óxido Ferroso-Férrico , Nanopartículas de Magnetita/química , Aterosclerose/induzido quimicamente , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Imageamento por Ressonância Magnética/métodos
6.
Oncoimmunology ; 13(1): 2296713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170155

RESUMO

Breast cancer is the most common malignancy in women worldwide and a highly heterogeneous disease. Four different subtypes are described that differ in the expression of hormone receptors as well as the growth factor receptor HER2. Treatment modalities and survival rate depend on the subtype of breast cancer. However, it is still not clear which patients benefit from immunotherapeutic approaches such as checkpoint blockade. Thus, we aimed to decipher the immune cell signature of the different breast cancer subtypes based on high-dimensional flow cytometry followed by unbiased approaches. Here, we show that the frequency of NK cells is reduced in Luminal A and B as well as triple negative breast cancer and that the phenotype of residual NK cells is changed toward regulatory CD11b-CD16- NK cells. Further, we found higher frequencies of PD-1+ CD4+ and CD8+ T cells in triple negative breast cancer. Moreover, while Luminal A-type breast cancer was enriched for CD14+ cDC2 (named type 3 DC (DC3)), CD14- cDC2 (named DC2) were more frequent in triple negative breast cancer. In contrast, HER2-enriched breast cancer did not show major alterations in the composition of the immune cell compartment in the tumor microenvironment. These findings suggest that patients with Luminal A- and B-type as well as triple negative breast cancer might benefit from immunotherapeutic approaches targeting NK cells.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Receptor ErbB-2/metabolismo , Linfócitos T CD8-Positivos , Citometria de Fluxo , Microambiente Tumoral
7.
Strahlenther Onkol ; 200(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163834

RESUMO

Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning. For this guideline, an interdisciplinary panel including experts from the working group for radiosurgery and stereotactic radiotherapy of the German Society for Radiation Oncology (DEGRO), the working group for physics and technology in stereotactic radiotherapy of the German Society for Medical Physics (DGMP), the German Society of Neurosurgery (DGNC), the German Society of Neuroradiology (DGNR) and the German Chapter of the International Society for Magnetic Resonance in Medicine (DS-ISMRM) have defined minimum MRI quality requirements as well as advanced MRI simulation options for cranial SRT.


Assuntos
Radioterapia (Especialidade) , Radiocirurgia , Humanos , Radiocirurgia/métodos , Imageamento por Ressonância Magnética , Dosagem Radioterapêutica , Imageamento Tridimensional
8.
Lancet Rheumatol ; 3(3): e185-e194, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279381

RESUMO

BACKGROUND: Interstitial lung disease (ILD) is the most common cause of death in systemic sclerosis. To date, the progression of systemic sclerosis-associated ILD is judged by the accrual of lung damage on CT and pulmonary function tests. However, diagnostic tools to assess disease activity are not available. Here, we tested the hypothesis that quantification of fibroblast activation by PET-CT using a 68Ga-labelled selective inhibitor of prolyl endopeptidase FAP (68Ga-FAPI-04) would correlate with ILD activity and disease progression in patients with systemic sclerosis-associated ILD. METHODS: Between Sept 10, 2018, and April 8, 2020, 21 patients with systemic sclerosis-associated ILD confirmed by high-resolution CT (HRCT) within 12 months of inclusion and with onset of systemic sclerosis-associated ILD within 5 years or signs of progressive ILD and 21 controls without ILD were consecutively enrolled. All participants underwent 68Ga-FAPI-04 PET-CT imaging and standard-of-care procedures, including HRCT and pulmonary function tests at baseline. Patients with systemic sclerosis-associated ILD were followed for 6 months with HRCT and pulmonary function tests. We compared baseline 68Ga-FAPI-04 PET-CT uptake with standard diagnostic tools and predictors of ILD progression. The association of 68Ga-FAPI-04 uptake with changes in forced vital capacity was analysed using mixed-effects models. Follow-up 68Ga-FAPI-04 PET-CT scans were obtained in a subset of patients treated with nintedanib (follow-up between 6-10 months) to assess change over time. FINDINGS: 68Ga-FAPI-04 accumulated in fibrotic areas of the lungs in patients with systemic sclerosis-associated ILD compared with controls, with a median standardised uptake value (SUV) mean over the whole lung of 0·80 (IQR 0·60-2·10) in the systemic sclerosis-ILD group and 0·50 (0·40-0·50) in the control group (p<0·0001) and a mean whole lung maximal SUV of 4·40 (range 3·05-5·20) in the systemic sclerosis-ILD group compared with 0·70 (0·65-0·70) in the control group (p<0·0001). Whole-lung FAPI metabolic active volume (wlFAPI-MAV) and whole-lung total lesion FAPI (wlTL-FAPI) were not measurable in control participants, because no 68Ga-FAPI-04 uptake above background level was observed. In the systemic sclerosis-ILD group the median wlFAPI-MAV was 254·00 cm3 (IQR 163·40-442·30), and the median wlTL-FAPI was 183·60 cm3 (98·04-960·70). 68Ga-FAPI-04 uptake was higher in patients with extensive disease, with previous ILD progression, or high EUSTAR activity scores than in those with with limited disease, previously stable ILD, or low EUSTAR activity scores. Increased 68Ga-FAPI-04 uptake at baseline was associated with progression of ILD independently of extent of involvement on HRCT scan and the forced vital capacity at baseline. In consecutive 68Ga-FAPI-04 PET-CTs, changes in 68Ga-FAPI-04 uptake was concordant with the observed response to the fibroblast-targeting antifibrotic drug nintedanib. INTERPRETATION: Our study presents the first in-human evidence that fibroblast activation correlates with fibrotic activity and disease progression in the lungs of patients with systemic sclerosis-associated ILD and that 68Ga-FAPI-04 PET-CT might improve risk assessment of systemic sclerosis-associated ILD. FUNDING: German Research Foundation, Erlangen Anschubs-und Nachwuchsfinanzierung, Interdisziplinäres Zentrum für Klinische Forschung Erlangen, Bundesministerium für Bildung und Forschung, Deutsche Stiftung Systemische Sklerose, Wilhelm-Sander-Foundation, Else-Kröner-Fresenius-Foundation, European Research Council, Ernst-Jung-Foundation, and Clinician Scientist Program Erlangen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...