Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36983478

RESUMO

The active and inexpensive catalyst cupric oxide (CuO) loaded foliar fertilizer of graphitic carbon nitride (g-C3N4) is investigated for biological applications due to its low cost and easy synthesis. The synthesized CuO NPs, bulk g-C3N4, exfoliated g-C3N4, and different weight percentages of 30 wt%, 40 wt%, 50 wt%, 60 wt%, and 70 wt% CuO-loaded g-C3N4 are characterized using different analytical techniques, including powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and ultraviolet-visible spectroscopy. The nanocomposite of CuO NPs loaded g-C3N4 exhibits antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The 20 µg/mL of 70 wt% CuO/g-C3N4 nanocomposite showed an efficiency of 98% for Gram-positive bacteria, 80% for E. Coli, and 85% for P. aeruginosa. In the same way, since the 70 wt% CuO/g-C3N4 nanocomposite showed the best results for antibacterial activity, the same compound was evaluated for anti-fungal activity. For this purpose, the fungi Fusarium oxysporum and Trichoderma viride were used. The anti-fungal activity experiments were not conducted in the presence of sunlight, and no appreciable fungal inhibition was observed. As per the literature, the presence of the catalyst g-C3N4, without an external light source, reduces the fungal inhibition performance. Hence, in the future, some modifications in the experimental conditions should be considered to improve the anti-fungal activity.

2.
Mikrochim Acta ; 189(10): 390, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138245

RESUMO

A novel binary heterogeneous electrocatalyst, Co2SnO4, decorated on chemically exfoliated boron nitride sheets (CE-BN) with an exceptional capacity to detect electrochemical properties has been prepared by the simple hydrothermal method. The structural, surface morphology and electrochemical characteristics of Co2SnO4/CE-BN were characterized using a range of physicochemical and electrochemical techniques. Various voltammetric approaches were used to observe the analytical behaviour and applications of Co2SnO4/CE-BN/GCE for the determination of 2-nitroaniline (2-NA). The whole experiment is operated in the potential range from 0 to - 1.0 V vs Ag/AgCl (sat. KCl). The impact of operational factors on the peak current of 2-NA was investigated, including the pH, sample concentration, modifier amount and scan speed. With an estimated differential pulse voltammetry detection limit of 0.0371 µM and excellent sensitivity of 1,35 µA µM-1 cm-2, the produced sensor, Co2SnO4/CE-BN/GCE, revealed high electrocatalytic activity (DPV). The system is more practical and sustainable due to its repeatability, stability and reproducibility with respect to the results achieved for detection of 2-NA. The synthesized Co2SnO4/CE-BN-modified sensor may thus be a likely choice for the detection of 2-NA in actual water sample analysis.


Assuntos
Água , Compostos de Anilina , Compostos de Boro , Eletrodos , Reprodutibilidade dos Testes
3.
Ultrason Sonochem ; 50: 218-223, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30274887

RESUMO

Combinations of different Advanced Oxidation Processes (AOPs) are being exploited for waste water treatment. The usage of ultrasound in photocatalysis finds much attention as the combined process offers some advantages over individual processes. Herein, we report the ultrasound assisted photocatalytic degradation of an organic pollutant (methyl orange as a model dye) in the presence of CuO-TiO2/rGO photocatalyst which was prepared by a simple wet impregnation method. A synergistic effect (3.7-fold) was observed by combining the sonolysis and photocatalysis processes. Influence of Cu loading and graphene oxide (GO) dosage over the photocatalytic performance of TiO2 was examined in detail. The catalyst dosage and initial concentration of MO were optimized based on a series of experimental studies. Besides, neutral pH was found to show an optimum efficiency for this sono-photocatalytic process.

4.
Top Curr Chem (Cham) ; 374(5): 75, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27709554

RESUMO

This chapter describes the use of ultrasound in remediation of wastewater contaminated with organic pollutants in the absence and presence of other advanced oxidation processes (AOPs) such as sonolysis, sono-ozone process, sonophotocatalysis, sonoFenton systems and sonophoto-Fenton methods in detail. All these methods are explained with the suitable literature illustrations. In most of the cases, hybrid AOPs (combination of ultrasound with one or more AOPs) resulted in superior efficacy to that of individual AOP. The advantageous effects such as additive and synergistic effects obtained by operating the hybrid AOPs are highlighted with appropriate examples. It is worth to mention here that the utilization of ultrasound is not only restricted in preparation of modern active catalysts but also extensively used for the wastewater treatment. Interestingly, ultrasound coupled AOPs are operationally simple, efficient, and environmentally benign, and can be readily applied for large scale industrial processes which make them economically viable.


Assuntos
Sonicação/métodos , Antibacterianos/química , Corantes/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Ferro/química , Oxirredução , Ozônio/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química
5.
Nanoscale ; 7(17): 7849-57, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25853995

RESUMO

Herein we report simple, low-cost and scalable preparation of reduced graphene oxide (rGO) supported surfactant-free Cu2O-TiO2 nanocomposite photocatalysts by an ultrasound assisted wet impregnation method. Unlike the conventional preparation techniques, simultaneous reduction of Cu(2+) (in the precursor) to Cu(+) (Cu2O), and graphene oxide (GO) to rGO is achieved by an ultrasonic method without the addition of any external reducing agent; this is ascertained by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. UV-visible diffused reflectance spectroscopy (DRS) studies (Tauc plots) provide evidence for the loading of Cu2O tailoring the optical band gap of the photocatalyst from 3.21 eV to 2.87 eV. The photoreactivity of the as-prepared Cu2O-TiO2/rGO samples is determined via H2 evolution from water in the presence of glycerol as a hole (h(+)) scavenger under visible light irradiation. Very interestingly, the addition of rGO augments the carrier mobility at the Cu2O-TiO2 p-n heterojunction, which is evidenced by the significantly reduced luminescence intensity of the Cu2O-TiO2/rGO photocatalyst. Hence rGO astonishingly enhances the photocatalytic activity compared with pristine TiO2 nanoparticles (NPs) and Cu2O-TiO2, by factors of ∼14 and ∼7, respectively. A maximum H2 production rate of 110 968 µmol h(-1) gcat(-1) is obtained with a 1.0% Cu and 3.0% GO photocatalyst composition; this is significantly higher than previously reported graphene based photocatalysts. Additionally, the present H2 production rate is much higher than those of precious/noble metal (especially Pt) assisted (as co-catalysts) graphene based photocatalysts. Moreover, to the best of our knowledge, this is the highest H2 production rate (110 968 µmol h(-1) gcat(-1)) achieved by a graphene based photocatalyst through the splitting of water under visible light irradiation.

6.
J Hazard Mater ; 291: 83-92, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-25771214

RESUMO

Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO-TiO2 photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV-vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO-TiO2 more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO2 and CuO facilitates the separation of photogenerated electron-hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC-MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO2 based photocatalysts for the complete mineralization of organic contaminants.


Assuntos
Poluentes Ambientais/química , Grafite/química , Compostos Orgânicos/química , Luz Solar , Ácido Benzoico/química , Catálise , Cobre/química , Luminescência , Oxigênio/química , Processos Fotoquímicos , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...