Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Am J Hum Genet ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39471805

RESUMO

Large biobank samples provide an opportunity to integrate broad phenotyping, familial records, and molecular genetics data to study complex traits and diseases. We introduce Pearson-Aitken Family Genetic Risk Scores (PA-FGRS), a method for estimating disease liability from patterns of diagnoses in extended, age-censored genealogical records. We then apply the method to study a paradigmatic complex disorder, major depressive disorder (MDD), using the iPSYCH2015 case-cohort study of 30,949 MDD cases, 39,655 random population controls, and more than 2 million relatives. We show that combining PA-FGRS liabilities estimated from family records with molecular genotypes of probands improves three lines of inquiry. Incorporating PA-FGRS liabilities improves classification of MDD over and above polygenic scores, identifies robust genetic contributions to clinical heterogeneity in MDD associated with comorbidity, recurrence, and severity and can improve the power of genome-wide association studies. Our method is flexible and easy to use, and our study approaches are generalizable to other datasets and other complex traits and diseases.

2.
Mil Psychol ; : 1-11, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39208338

RESUMO

PTSD and AUD are frequently comorbid post-trauma outcomes. Much remains unknown about shared risk factors as PTSD and AUD work tends to be conducted in isolation. We examined how self-report measures of distress tolerance (DT), experiential avoidance (EA), and drinking motives (DM) differed across diagnostic groups in white, male combat-exposed veterans (n = 77). A MANOVA indicated a significant difference in constructs by group, F (5, 210) = 4.7, p = <.001. Follow-up ANOVAs indicated DM subscales (Coping: F (3,82) = 21.3; Social: F (3,82) = 13.1; Enhancement: F (3,82) = 10.4; ps = <.001) and EA (F (3,73) = 7.8, p < .001) differed by groups but not DT. Post hoc comparisons indicated that mean scores of the comorbid and AUD-only groups were significantly higher than controls for all DM subscales (all ps < .01). EA scores were significantly higher for the comorbid as compared to control (p < .001) and PTS-only (p = .007) groups. Findings support shared psychological factors in a comorbid PTSD-AUD population.

3.
medRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39006447

RESUMO

The major anxiety disorders (ANX; including generalized anxiety disorder, panic disorder, and phobias) are highly prevalent, often onset early, persist throughout life, and cause substantial global disability. Although distinct in their clinical presentations, they likely represent differential expressions of a dysregulated threat-response system. Here we present a genome-wide association meta-analysis comprising 122,341 European ancestry ANX cases and 729,881 controls. We identified 58 independent genome-wide significant ANX risk variants and 66 genes with robust biological support. In an independent sample of 1,175,012 self-report ANX cases and 1,956,379 controls, 51 of the 58 associated variants were replicated. As predicted by twin studies, we found substantial genetic correlation between ANX and depression, neuroticism, and other internalizing phenotypes. Follow-up analyses demonstrated enrichment in all major brain regions and highlighted GABAergic signaling as one potential mechanism underlying ANX genetic risk. These results advance our understanding of the genetic architecture of ANX and prioritize genes for functional follow-up studies.

4.
medRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699366

RESUMO

Genome-wide association studies (GWAS) of psychiatric disorders (PD) yield numerous loci with significant signals, but often do not implicate specific genes. Because GWAS risk loci are enriched in expression/protein/methylation quantitative loci (e/p/mQTL, hereafter xQTL), transcriptome/proteome/methylome-wide association studies (T/P/MWAS, hereafter XWAS) that integrate xQTL and GWAS information, can link GWAS signals to effects on specific genes. To further increase detection power, gene signals are aggregated within relevant gene sets (GS) by performing gene set enrichment (GSE) analyses. Often GSE methods test for enrichment of "signal" genes in curated GS while overlooking their linkage disequilibrium (LD) structure, allowing for the possibility of increased false positive rates. Moreover, no GSE tool uses xQTL information to perform mendelian randomization (MR) analysis. To make causal inference on association between PD and GS, we develop a novel MR GSE (MR-GSE) procedure. First, we generate a "synthetic" GWAS for each MSigDB GS by aggregating summary statistics for x-level (mRNA, protein or DNA methylation (DNAm) levels) from the largest xQTL studies available) of genes in a GS. Second, we use synthetic GS GWAS as exposure in a generalized summary-data-based-MR analysis of complex trait outcomes. We applied MR-GSE to GWAS of nine important PD. When applied to the underpowered opioid use disorder GWAS, none of the four analyses yielded any signals, which suggests a good control of false positive rates. For other PD, MR-GSE greatly increased the detection of GO terms signals (2,594) when compared to the commonly used (non-MR) GSE method (286). Some of the findings might be easier to adapt for treatment, e.g., our analyses suggest modest positive effects for supplementation with certain vitamins and/or omega-3 for schizophrenia, bipolar and major depression disorder patients. Similar to other MR methods, when applying MR-GSE researchers should be mindful of the confounding effects of horizontal pleiotropy on statistical inference.

5.
Bioinformatics ; 40(4)2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38632050

RESUMO

MOTIVATION: As the availability of larger and more ethnically diverse reference panels grows, there is an increase in demand for ancestry-informed imputation of genome-wide association studies (GWAS), and other downstream analyses, e.g. fine-mapping. Performing such analyses at the genotype level is computationally challenging and necessitates, at best, a laborious process to access individual-level genotype and phenotype data. Summary-statistics-based tools, not requiring individual-level data, provide an efficient alternative that streamlines computational requirements and promotes open science by simplifying the re-analysis and downstream analysis of existing GWAS summary data. However, existing tools perform only disparate parts of needed analysis, have only command-line interfaces, and are difficult to extend/link by applied researchers. RESULTS: To address these challenges, we present Genome Analysis Using Summary Statistics (GAUSS)-a comprehensive and user-friendly R package designed to facilitate the re-analysis/downstream analysis of GWAS summary statistics. GAUSS offers an integrated toolkit for a range of functionalities, including (i) estimating ancestry proportion of study cohorts, (ii) calculating ancestry-informed linkage disequilibrium, (iii) imputing summary statistics of unobserved variants, (iv) conducting transcriptome-wide association studies, and (v) correcting for "Winner's Curse" biases. Notably, GAUSS utilizes an expansive, multi-ethnic reference panel consisting of 32 953 genomes from 29 ethnic groups. This panel enhances the range and accuracy of imputable variants, including the ability to impute summary statistics of rarer variants. As a result, GAUSS elevates the quality and applicability of existing GWAS analyses without requiring access to subject-level genotypic and phenotypic information. AVAILABILITY AND IMPLEMENTATION: The GAUSS R package, complete with its source code, is readily accessible to the public via our GitHub repository at https://github.com/statsleelab/gauss. To further assist users, we provided illustrative use-case scenarios that are conveniently found at https://statsleelab.github.io/gauss/, along with a comprehensive user guide detailed in Supplementary Text S1.


Assuntos
Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Software , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Genótipo , Estudos de Coortes
6.
Nat Genet ; 56(5): 792-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38637617

RESUMO

Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neurobiologia , Polimorfismo de Nucleotídeo Único , Transtornos de Estresse Pós-Traumáticos/genética , População Branca/genética , Brancos , Negro ou Afro-Americano , Indígena Americano ou Nativo do Alasca
7.
Nat Genet ; 55(12): 2269-2276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985819

RESUMO

Biobanks that collect deep phenotypic and genomic data across many individuals have emerged as a key resource in human genetics. However, phenotypes in biobanks are often missing across many individuals, limiting their utility. We propose AutoComplete, a deep learning-based imputation method to impute or 'fill-in' missing phenotypes in population-scale biobank datasets. When applied to collections of phenotypes measured across ~300,000 individuals from the UK Biobank, AutoComplete substantially improved imputation accuracy over existing methods. On three traits with notable amounts of missingness, we show that AutoComplete yields imputed phenotypes that are genetically similar to the originally observed phenotypes while increasing the effective sample size by about twofold on average. Further, genome-wide association analyses on the resulting imputed phenotypes led to a substantial increase in the number of associated loci. Our results demonstrate the utility of deep learning-based phenotype imputation to increase power for genetic discoveries in existing biobank datasets.


Assuntos
Aprendizado Profundo , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Bancos de Espécimes Biológicos , Polimorfismo de Nucleotídeo Único , Fenótipo
8.
Nat Genet ; 55(12): 2082-2093, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985818

RESUMO

Biobanks often contain several phenotypes relevant to diseases such as major depressive disorder (MDD), with partly distinct genetic architectures. Researchers face complex tradeoffs between shallow (large sample size, low specificity/sensitivity) and deep (small sample size, high specificity/sensitivity) phenotypes, and the optimal choices are often unclear. Here we propose to integrate these phenotypes to combine the benefits of each. We use phenotype imputation to integrate information across hundreds of MDD-relevant phenotypes, which significantly increases genome-wide association study (GWAS) power and polygenic risk score (PRS) prediction accuracy of the deepest available MDD phenotype in UK Biobank, LifetimeMDD. We demonstrate that imputation preserves specificity in its genetic architecture using a novel PRS-based pleiotropy metric. We further find that integration via summary statistics also enhances GWAS power and PRS predictions, but can introduce nonspecific genetic effects depending on input. Our work provides a simple and scalable approach to improve genetic studies in large biobanks by integrating shallow and deep phenotypes.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Bancos de Espécimes Biológicos , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
9.
medRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37693460

RESUMO

Posttraumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 novel). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (e.g., GRIA1, GRM8, CACNA1E ), developmental, axon guidance, and transcription factors (e.g., FOXP2, EFNA5, DCC ), synaptic structure and function genes (e.g., PCLO, NCAM1, PDE4B ), and endocrine or immune regulators (e.g., ESR1, TRAF3, TANK ). Additional top genes influence stress, immune, fear, and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.

10.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745400

RESUMO

Alcohol use disorder (AUD) is moderately heritable with significant social and economic impact. Genome-wide association studies (GWAS) have identified common variants associated with AUD, however, rare variant investigations have yet to achieve well-powered sample sizes. In this study, we conducted an interval-based exome-wide analysis of the Alcohol Use Disorder Identification Test Problems subscale (AUDIT-P) using both machine learning (ML) predicted risk and empirical functional weights. This research has been conducted using the UK Biobank Resource (application number 30782.) Filtering the 200k exome release to unrelated individuals of European ancestry resulted in a sample of 147,386 individuals with 51,357 observed and 96,029 unmeasured but predicted AUDIT-P for exome analysis. Sequence Kernel Association Test (SKAT/SKAT-O) was used for rare variant (Minor Allele Frequency (MAF) < 0.01) interval analyses using default and empirical weights. Empirical weights were constructed using annotations found significant by stratified LD Score Regression analysis of predicted AUDIT-P GWAS, providing prior functional weights specific to AUDIT-P. Using only samples with observed AUDIT-P yielded no significantly associated intervals. In contrast, ADH1C and THRA gene intervals were significant (False discovery rate (FDR) <0.05) using default and empirical weights in the predicted AUDIT-P sample, with the most significant association found using predicted AUDIT-P and empirical weights in the ADH1C gene (SKAT-O P Default = 1.06 x 10 -9 and P Empirical weight = 6.25 x 10 -11 ). These findings provide evidence for rare variant association of the ADH1C gene with the AUDIT-P and highlight the successful leveraging of ML to increase effective sample size and prior empirical functional weights based on common variant GWAS data to refine and increase the statistical significance in underpowered phenotypes.

11.
Complex Psychiatry ; 9(1-4): 130-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588130

RESUMO

Background: The genome-wide association study (GWAS) is a common tool to identify genetic variants associated with complex traits, including psychiatric disorders (PDs). However, post-GWAS analyses are needed to extend the statistical inference to biologically relevant entities, e.g., genes, proteins, and pathways. To achieve this goal, researchers developed methods that incorporate biologically relevant intermediate molecular phenotypes, such as gene expression and protein abundance, which are posited to mediate the variant-trait association. Transcriptome-wide association study (TWAS) and proteome-wide association study (PWAS) are commonly used methods to test the association between these molecular mediators and the trait. Summary: In this review, we discuss the most recent developments in TWAS and PWAS. These methods integrate existing "omic" information with the GWAS summary statistics for trait(s) of interest. Specifically, they impute transcript/protein data and test the association between imputed gene expression/protein level with phenotype of interest by using (i) GWAS summary statistics and (ii) reference transcriptomic/proteomic/genomic datasets. TWAS and PWAS are suitable as analysis tools for (i) primary association scan and (ii) fine-mapping to identify potentially causal genes for PDs. Key Messages: As post-GWAS analyses, TWAS and PWAS have the potential to highlight causal genes for PDs. These prioritized genes could indicate targets for the development of novel drug therapies. For researchers attempting such analyses, we recommend Mendelian randomization tools that use GWAS statistics for both trait and reference datasets, e.g., summary Mendelian randomization (SMR). We base our recommendation on (i) being able to use the same tool for both TWAS and PWAS, (ii) not requiring the pre-computed weights (and thus easier to update for larger reference datasets), and (iii) most larger transcriptome reference datasets are publicly available and easy to transform into a compatible format for SMR analysis.

12.
Front Genet ; 14: 1191264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415601

RESUMO

Neuropsychiatric and substance use disorders (NPSUDs) have a complex etiology that includes environmental and polygenic risk factors with significant cross-trait genetic correlations. Genome-wide association studies (GWAS) of NPSUDs yield numerous association signals. However, for most of these regions, we do not yet have a firm understanding of either the specific risk variants or the effects of these variants. Post-GWAS methods allow researchers to use GWAS summary statistics and molecular mediators (transcript, protein, and methylation abundances) infer the effect of these mediators on risk for disorders. One group of post-GWAS approaches is commonly referred to as transcriptome/proteome/methylome-wide association studies, which are abbreviated as T/P/MWAS (or collectively as XWAS). Since these approaches use biological mediators, the multiple testing burden is reduced to the number of genes (∼20,000) instead of millions of GWAS SNPs, which leads to increased signal detection. In this work, our aim is to uncover likely risk genes for NPSUDs by performing XWAS analyses in two tissues-blood and brain. First, to identify putative causal risk genes, we performed an XWAS using the Summary-data-based Mendelian randomization, which uses GWAS summary statistics, reference xQTL data, and a reference LD panel. Second, given the large comorbidities among NPSUDs and the shared cis-xQTLs between blood and the brain, we improved XWAS signal detection for underpowered analyses by performing joint concordance analyses between XWAS results i) across the two tissues and ii) across NPSUDs. All XWAS signals i) were adjusted for heterogeneity in dependent instruments (HEIDI) (non-causality) p-values and ii) used to test for pathway enrichment. The results suggest that there were widely shared gene/protein signals within the major histocompatibility complex region on chromosome 6 (BTN3A2 and C4A) and elsewhere in the genome (FURIN, NEK4, RERE, and ZDHHC5). The identification of putative molecular genes and pathways underlying risk may offer new targets for therapeutic development. Our study revealed an enrichment of XWAS signals in vitamin D and omega-3 gene sets. So, including vitamin D and omega-3 in treatment plans may have a modest but beneficial effect on patients with bipolar disorder.

13.
PLoS One ; 18(4): e0283985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37098020

RESUMO

BACKGROUND: Variation in genes involved in ethanol metabolism has been shown to influence risk for alcohol dependence (AD) including protective loss of function alleles in ethanol metabolizing genes. We therefore hypothesized that people with severe AD would exhibit different patterns of rare functional variation in genes with strong prior evidence for influencing ethanol metabolism and response when compared to genes not meeting these criteria. OBJECTIVE: Leverage a novel case only design and Whole Exome Sequencing (WES) of severe AD cases from the island of Ireland to quantify differences in functional variation between genes associated with ethanol metabolism and/or response and their matched control genes. METHODS: First, three sets of ethanol related genes were identified including those a) involved in alcohol metabolism in humans b) showing altered expression in mouse brain after alcohol exposure, and altering ethanol behavioral responses in invertebrate models. These genes of interest (GOI) sets were matched to control gene sets using multivariate hierarchical clustering of gene-level summary features from gnomAD. Using WES data from 190 individuals with severe AD, GOI were compared to matched control genes using logistic regression to detect aggregate differences in abundance of loss of function, missense, and synonymous variants, respectively. RESULTS: Three non-independent sets of 10, 117, and 359 genes were queried against control gene sets of 139, 1522, and 3360 matched genes, respectively. Significant differences were not detected in the number of functional variants in the primary set of ethanol-metabolizing genes. In both the mouse expression and invertebrate sets, we observed an increased number of synonymous variants in GOI over matched control genes. Post-hoc simulations showed the estimated effects sizes observed are unlikely to be under-estimated. CONCLUSION: The proposed method demonstrates a computationally viable and statistically appropriate approach for genetic analysis of case-only data for hypothesized gene sets supported by empirical evidence.


Assuntos
Alcoolismo , Humanos , Camundongos , Animais , Alcoolismo/genética , Alcoolismo/diagnóstico , Exoma/genética , Alelos , Etanol , Mutação Silenciosa , Variação Genética
14.
Br J Psychiatry ; 223(1): 301-308, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36503694

RESUMO

BACKGROUND: Psychotic disorders and schizotypal traits aggregate in the relatives of probands with schizophrenia. It is currently unclear how variability in symptom dimensions in schizophrenia probands and their relatives is associated with polygenic liability to psychiatric disorders. AIMS: To investigate whether polygenic risk scores (PRSs) can predict symptom dimensions in members of multiplex families with schizophrenia. METHOD: The largest genome-wide data-sets for schizophrenia, bipolar disorder and major depressive disorder were used to construct PRSs in 861 participants from the Irish Study of High-Density Multiplex Schizophrenia Families. Symptom dimensions were derived using the Operational Criteria Checklist for Psychotic Disorders in participants with a history of a psychotic episode, and the Structured Interview for Schizotypy in participants without a history of a psychotic episode. Mixed-effects linear regression models were used to assess the relationship between PRS and symptom dimensions across the psychosis spectrum. RESULTS: Schizophrenia PRS is significantly associated with the negative/disorganised symptom dimension in participants with a history of a psychotic episode (P = 2.31 × 10-4) and negative dimension in participants without a history of a psychotic episode (P = 1.42 × 10-3). Bipolar disorder PRS is significantly associated with the manic symptom dimension in participants with a history of a psychotic episode (P = 3.70 × 10-4). No association with major depressive disorder PRS was observed. CONCLUSIONS: Polygenic liability to schizophrenia is associated with higher negative/disorganised symptoms in participants with a history of a psychotic episode and negative symptoms in participants without a history of a psychotic episode in multiplex families with schizophrenia. These results provide genetic evidence in support of the spectrum model of schizophrenia, and support the view that negative and disorganised symptoms may have greater genetic basis than positive symptoms, making them better indices of familial liability to schizophrenia.


Assuntos
Transtorno Depressivo Maior , Transtornos Psicóticos , Esquizofrenia , Transtorno da Personalidade Esquizotípica , Humanos , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Transtorno da Personalidade Esquizotípica/diagnóstico , Transtorno da Personalidade Esquizotípica/genética , Transtorno da Personalidade Esquizotípica/psicologia , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/genética , Transtornos Psicóticos/genética , Transtornos Psicóticos/psicologia , Fatores de Risco
15.
Psychol Med ; 53(8): 3448-3460, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35098912

RESUMO

BACKGROUND: Do genetic risk profiles for drug use disorder (DUD), major depression (MD), and attention-deficit hyperactivity disorder (ADHD) differ substantially as a function of sex, age at onset (AAO), recurrence, mode of ascertainment, and treatment? METHODS: Family genetic risk scores (FGRS) for MD, anxiety disorders, bipolar disorder, schizophrenia, alcohol use disorder, DUD, ADHD, and autism-spectrum disorder were calculated from 1st-5th degree relatives in the Swedish population born 1932-1995 (n = 5 829 952). Profiles of these FGRS were obtained and compared across various subgroups of DUD, MD, and ADHD cases. RESULTS: Differences in FGRS profiles for DUD, MD, and ADHD by sex were modest, but they varied substantially by AAO, recurrence, ascertainment, and treatment with scores typically higher in cases with greater severity (e.g. early AAO, high recurrence, ascertainment in high intensity clinical settings, and treatment). However, severity was not always related to purer genetic profiles, as genetic risk for many disorders often increased together. However, some results, such as by mode of ascertainment from different Swedish registries, produced qualitative differences in FGRS profiles. CONCLUSIONS: Differences in FGRS profiles for DUD, MD, and ADHD varied substantially by AAO, recurrence, ascertainment, and treatment. Replication of psychiatric studies, particularly those examining genetic factors, may be difficult unless cases are matched not only by diagnosis but by important clinical characteristics. Genetic correlations between psychiatric disorders could arise through one disorder impacting on the patterns of ascertainment for the other, rather than from the direct effects of shared genetic liabilities.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Depressivo Maior , Transtornos Relacionados ao Uso de Substâncias , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Depressão , Idade de Início , Perfil Genético , Fatores de Risco , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/genética
16.
Schizophrenia (Heidelb) ; 8(1): 106, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434002

RESUMO

Psychotic and affective disorders often aggregate in the relatives of probands with schizophrenia, and genetic studies show substantial genetic correlation among schizophrenia, bipolar disorder, and major depressive disorder. In this study, we examined the polygenic risk burden of bipolar disorder and major depressive disorder in 257 multiplex schizophrenia families (N = 1005) from the Irish Study of High-Density Multiplex Schizophrenia Families versus 2205 ancestry-matched controls. Our results indicate that members of multiplex schizophrenia families have an increased polygenic risk for bipolar disorder and major depressive disorder compared to population controls. However, this observation is largely attributable to the part of the genetic risk that bipolar disorder or major depressive disorder share with schizophrenia due to genetic correlation, rather than the affective portion of the genetic risk unique to them. These findings suggest that a complete interpretation of cross-disorder polygenic risks in multiplex families requires an assessment of the relative contribution of shared versus unique genetic factors to account for genetic correlations across psychiatric disorders.

17.
Noncoding RNA ; 8(4)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36005827

RESUMO

Alcohol use disorder (AUD) is a complex, chronic, debilitating condition impacting millions worldwide. Genetic, environmental, and epigenetic factors are known to contribute to the development of AUD. Long non-coding RNAs (lncRNAs) are a class of regulatory RNAs, commonly referred to as the "dark matter" of the genome, with little to no protein-coding potential. LncRNAs have been implicated in numerous processes critical for cell survival, suggesting that they play important functional roles in regulating different cell processes. LncRNAs were also shown to display higher tissue specificity than protein-coding genes and have a higher abundance in the brain and central nervous system, demonstrating a possible role in the etiology of psychiatric disorders. Indeed, genetic (e.g., genome-wide association studies (GWAS)), molecular (e.g., expression quantitative trait loci (eQTL)) and epigenetic studies from postmortem brain tissues have identified a growing list of lncRNAs associated with neuropsychiatric and substance use disorders. Given that the expression patterns of lncRNAs have been associated with widespread changes in the transcriptome, including methylation, chromatin architecture, and activation or suppression of translational activity, the regulatory nature of lncRNAs may be ubiquitous and an innate component of gene regulation. In this review, we present a synopsis of the functional impact that lncRNAs may play in the etiology of AUD. We also discuss the classifications of lncRNAs, their known functional roles, and therapeutic advancements in the field of lncRNAs to further clarify the functional relationship between lncRNAs and AUD.

18.
Transl Psychiatry ; 12(1): 291, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864105

RESUMO

Multiplex families have higher recurrence risk of schizophrenia compared to the families of sporadic cases, but the source of this increased recurrence risk is unknown. We used schizophrenia genome-wide association study data (N = 156,509) to construct polygenic risk scores (PRS) in 1005 individuals from 257 multiplex schizophrenia families, 2114 ancestry-matched sporadic cases, and 2205 population controls, to evaluate whether increased PRS can explain the higher recurrence risk of schizophrenia in multiplex families compared to ancestry-matched sporadic cases. Using mixed-effects logistic regression with family structure modeled as a random effect, we show that SCZ PRS in familial cases does not differ significantly from sporadic cases either with, or without family history (FH) of psychotic disorders (All sporadic cases p = 0.90, FH+ cases p = 0.88, FH- cases p = 0.82). These results indicate that increased burden of common schizophrenia risk variation as indexed by current SCZ PRS, is unlikely to account for the higher recurrence risk of schizophrenia in multiplex families. In the absence of elevated PRS, segregation of rare risk variation or environmental influences unique to the families may explain the increased familial recurrence risk. These findings also further validate a genetically influenced psychosis spectrum, as shown by a continuous increase of common SCZ risk variation burden from unaffected relatives to schizophrenia cases in multiplex families. Finally, these results suggest that common risk variation loading are unlikely to be predictive of schizophrenia recurrence risk in the families of index probands, and additional components of genetic risk must be identified and included in order to improve recurrence risk prediction.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial , Transtornos Psicóticos/genética , Fatores de Risco , Esquizofrenia/epidemiologia , Esquizofrenia/genética
19.
Brain Behav Immun ; 104: 183-190, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714915

RESUMO

Common genetic variants identified in genome-wide association studies (GWAS) show varying degrees of genetic pleiotropy across complex human disorders. Clinical studies of schizophrenia (SCZ) suggest that in addition to neuropsychiatric symptoms, patients with SCZ also show variable immune dysregulation. Epidemiological studies of multiple sclerosis (MS), an autoimmune, neurodegenerative disorder of the central nervous system, suggest that in addition to the manifestation of neuroinflammatory complications, patients with MS may also show co-occurring neuropsychiatric symptoms with disease progression. In this study, we analyzed the largest available GWAS datasets for SCZ (N = 161,405) and MS (N = 41,505) using Gaussian causal mixture modeling (MiXeR) and conditional/conjunctional false discovery rate (condFDR) frameworks to explore and quantify the shared genetic architecture of these two complex disorders at common variant level. Despite detecting only a negligible genetic correlation (rG = 0.057), we observe polygenic overlap between SCZ and MS, and a substantial genetic enrichment in SCZ conditional on associations with MS, and vice versa. By leveraging this cross-disorder enrichment, we identified 36 loci jointly associated with SCZ and MS at conjunctional FDR < 0.05 with mixed direction of effects. Follow-up functional analysis of the shared loci implicates candidate genes and biological processes involved in immune response and B-cell receptor signaling pathways. In conclusion, this study demonstrates the presence of polygenic overlap between SCZ and MS in the absence of a genetic correlation and provides new insights into the shared genetic architecture of these two disorders at the common variant level.

20.
Nature ; 604(7906): 502-508, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396580

RESUMO

Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Alelos , Predisposição Genética para Doença/genética , Genômica , Humanos , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...