Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 110(11): e16247, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37792540

RESUMO

PREMISE: There is mounting evidence that age matters in plant demography, but also indications that relationships between age and demographic rates may vary significantly among species. Age-based plant demographic data, however, are time-consuming to collect and still lacking for most species, and little is known about general patterns across species or what may drive differences. METHODS: We used individual birth and death records for 12 Rhododendron species from botanic gardens and conducted Bayesian survival trajectory analyses to assess how mortality changed with age. We calculated the demographic measures of aging rate, life-span equality, and life expectancy for each species, and assessed their relationships with the climatic conditions at species' sites of ancestral origin and with taxonomic group (subgenus). RESULTS: We found substantial among-species variation in survival trajectories, with mortality increasing, decreasing, or remaining constant with advancing age. Moreover, we found no relationships between demographic measures and ancestral climatic conditions but there were statistically significant differences among taxonomic groups in the rate of change in mortality with age (aging rate). CONCLUSIONS: We conclude that demographic consequences of aging can differ qualitatively, even among species in the same genus. In addition, taxonomic trends in aging rates indicate they may be genetically determined, though evolutionary drivers are still unclear. Furthermore, we suggest there is untapped potential in using botanic garden records in future studies on plant life history.


Assuntos
Jardins , Rhododendron , Rhododendron/genética , Conservação dos Recursos Naturais , Teorema de Bayes , Plantas , Demografia
2.
Proc Natl Acad Sci U S A ; 116(19): 9658-9664, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004061

RESUMO

Biodiversity loss is a major challenge. Over the past century, the average rate of vertebrate extinction has been about 100-fold higher than the estimated background rate and population declines continue to increase globally. Birth and death rates determine the pace of population increase or decline, thus driving the expansion or extinction of a species. Design of species conservation policies hence depends on demographic data (e.g., for extinction risk assessments or estimation of harvesting quotas). However, an overview of the accessible data, even for better known taxa, is lacking. Here, we present the Demographic Species Knowledge Index, which classifies the available information for 32,144 (97%) of extant described mammals, birds, reptiles, and amphibians. We show that only 1.3% of the tetrapod species have comprehensive information on birth and death rates. We found no demographic measures, not even crude ones such as maximum life span or typical litter/clutch size, for 65% of threatened tetrapods. More field studies are needed; however, some progress can be made by digitalizing existing knowledge, by imputing data from related species with similar life histories, and by using information from captive populations. We show that data from zoos and aquariums in the Species360 network can significantly improve knowledge for an almost eightfold gain. Assessing the landscape of limited demographic knowledge is essential to prioritize ways to fill data gaps. Such information is urgently needed to implement management strategies to conserve at-risk taxa and to discover new unifying concepts and evolutionary relationships across thousands of tetrapod species.


Assuntos
Biodiversidade , Evolução Biológica , Conservação dos Recursos Naturais , Extinção Biológica , Vertebrados/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...