Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 31(5): 544-557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514848

RESUMO

The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.


Assuntos
COVID-19 , Modelos Animais de Doenças , Proteína Ligante Fas , SARS-CoV-2 , Animais , Camundongos , Líquido da Lavagem Broncoalveolar , COVID-19/patologia , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , COVID-19/mortalidade , Proteína Ligante Fas/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL
2.
Vaccines (Basel) ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543927

RESUMO

Rabies, a viral disease spread by infected animal bites that causes encephalitis in humans and other mammals, is a neglected infectious disease present on all continents except Antarctica. Spain has been free of terrestrial rabies since 1978. However, due to its geographical situation, it represents a bridge for imported cases from an endemic continent such as Africa to Europe. Rabies vaccination in dogs is an essential preventive tool against this zoonosis. The aim of this study was to determine the state of the immune response against rabies virus in dogs in Spain and to demonstrate whether several factors that have been previously related to the influence of the seroprevalence of this species are involved here. The seroconversion level of this zoonotic virus was assessed in a total of 1060 animals. Indirect ELISA was used to obtain data for statistical analysis to evaluate the studied variables. Working under the concept of One Health, this study provides relevant information to be taken into consideration not only to prevent re-emergence in countries free of this disease but also for prevention and control in endemic countries.

3.
Vet Sci ; 11(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535838

RESUMO

Sarcocystis spp. are complex apicomplexan parasites that cause a substantial economic impact on livestock used for meat production. These parasites are present worldwide. Our study aimed to identify Sarcocystis species affecting sheep meat in southern-central Spain and to evaluate the effectiveness of freezing for parasite inactivation. A total of 210 condemned samples of sheep meat were thoroughly assessed grossly and microscopically; the presence of macro- and microcysts was confirmed. The samples were then frozen at -20 °C for various time intervals (24, 48, 72, 96, 120, and 144 h) and compared with untreated samples. Bradyzoites were isolated through pepsin digestion for subsequent molecular analysis and viability assessment, employing trypan blue and double fluorescence staining techniques. Our measurements confirmed the presence of S. tenella, S. gigantea, and S. medusiformis in Spanish domestic sheep. Freezing for 96 to 144 h resulted in a significant reduction in parasite viability, with a robust correlation observed between the two staining methods. Both stains effectively measured the viability of Sarcocystis, thereby promising future advances in meat safety.

4.
Pathogens ; 12(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38133284

RESUMO

Scrapie, a naturally occurring prion disease affecting goats and sheep, comprises classical and atypical forms, with classical scrapie being the archetype of transmissible spongiform encephalopathies. This review explores the challenges of scrapie diagnosis and the utility of various biomarkers and their potential implications for human prion diseases. Understanding these biomarkers in the context of scrapie may enable earlier prion disease diagnosis in humans, which is crucial for effective intervention. Research on scrapie biomarkers bridges the gap between veterinary and human medicine, offering hope for the early detection and improved management of prion diseases.

5.
Vet Res ; 54(1): 94, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848924

RESUMO

Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. Most prion diseases and their susceptibility and pathogenesis are mainly modulated by the PRNP gene that codes for PrP. Mutations and polymorphisms in the PRNP gene can alter PrPC amino acid sequence, leading to a change in transmission efficiency depending on the place where it occurs. Horses are animals that are considered to be highly resistant to prions. Several studies have attempted to identify polymorphisms in the PRNP gene that explain the reason for this high resistance. In this study, we have analysed 207 horses from 20 different breeds, discovering 3 novel PRNP polymorphisms. By using computer programmes such as PolyPhen-2, PROVEAN, PANTHER, Meta-SNP and PredictSNP, we have predicted the possible impact that these new polymorphisms would have on the horse prion protein. In addition, we measured the propensity for amyloid aggregation using AMYCO and analysed the lack of hydrogen bridges that these changes would entail together with their electrostatic potentials using Swiss-PdbViewer software, showing that an increased amyloid propensity could be due to changes at the level of electrostatic potentials.


Assuntos
Doenças dos Cavalos , Doenças Priônicas , Príons , Animais , Sequência de Aminoácidos , Doenças dos Cavalos/genética , Cavalos/genética , Polimorfismo Genético , Doenças Priônicas/genética , Doenças Priônicas/veterinária , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética
6.
Vet Res ; 54(1): 89, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794450

RESUMO

The emergence of bovine spongiform encephalopathy (BSE) prions from atypical scrapie has been recently observed upon experimental transmission to rodent and swine models. This study aimed to assess whether the inoculation of atypical scrapie could induce BSE-like disease in cattle. Four calves were intracerebrally challenged with atypical scrapie. Animals were euthanized without clinical signs of prion disease and tested negative for PrPSc accumulation by immunohistochemistry and western blotting. However, an emergence of BSE-like prion seeding activity was detected during in vitro propagation of brain samples from the inoculated animals. These findings suggest that atypical scrapie may represent a potential source of BSE infection in cattle.


Assuntos
Doenças dos Bovinos , Encefalopatia Espongiforme Bovina , Doenças Priônicas , Príons , Scrapie , Doenças dos Ovinos , Doenças dos Suínos , Ovinos , Feminino , Bovinos , Animais , Suínos , Doenças Priônicas/veterinária , Encéfalo/metabolismo
7.
Vet Res ; 54(1): 74, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684668

RESUMO

Prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. They are characterized by the conformational conversion of the cellular prion protein (PrPC) into the pathological prion protein (PrPSc). In 2016, chronic wasting disease (CWD) gained great importance at European level due to the first disease detection in a wild reindeer (Rangifer tarandus) in Norway. The subsequent intensive CWD surveillance launched in cervids resulted in the detection of CWD in moose (Alces alces), with 11 cases in Norway, 3 in Finland and 4 in Sweden. These moose cases differ considerably from CWD cases in North American and reindeer in Norway, as PrPSc was detectable in the brain but not in lymphoid tissues. These facts suggest the occurrence of a new type of CWD. Here, we show some immunohistochemical features that are clearly different from CWD cases in North American and Norwegian reindeer. Further, the different types of PrPSc deposits found among moose demonstrate strong variations between the cases, supporting the postulation that these cases could carry multiple strains of CWD.


Assuntos
Cervos , Príons , Rena , Doença de Emaciação Crônica , Animais , Proteínas Priônicas , Doença de Emaciação Crônica/epidemiologia , Finlândia/epidemiologia , Suécia/epidemiologia , Encéfalo , Noruega/epidemiologia
8.
Food Waterborne Parasitol ; 32: e00203, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37457632

RESUMO

Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii, an intracellular parasite that presents a worldwide risk. Humans can become infected by ingesting meat infected with T. gondii, and the consumption of infected sheep and goat meat is a significant public health issue. Antibodies against T. gondii have been found in sheep in Spain, indicating the presence of the parasite in the country. However, no previous studies have assessed the presence of T. gondii in sheep meat in Spain. In view of the significance of the transmission of T. gondii through meat consumption and given the lack of previous studies in Spain, we carried out an investigation to evaluate the presence of T. gondii in adult sheep meat (mutton). A total of 216 muscle samples were analyzed by digestion, and a real-time PCR assay was used to determine the presence of T. gondii DNA. A total of 24.5% of the samples were found to be parasitized, indicating that the consumption of sheep meat can present an important risk for human health.

9.
Front Mol Neurosci ; 16: 1175364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152434

RESUMO

Chronic accumulation of misfolded proteins such as PrPSc can alter the endoplasmic reticulum homeostasis triggering the unfolded protein response (UPR). In this pathogenic event, the molecular chaperones play an important role. Several reports in humans and animals have suggested that neurodegeneration is related to endoplasmic reticulum stress in diseases caused by the accumulation of misfolded proteins. In this study, we investigated the expression of three endoplasmic reticulum stress markers: PERK (protein kinase R-like endoplasmic reticulum kinase), BiP (binding immunoglobulin protein), and PDI (Protein Disulfide Isomerase). In addition, we evaluated the accumulation of ubiquitin as a marker for protein degradation mediated by the proteasome. These proteins were studied in brain tissues of sheep affected by scrapie in clinical and preclinical stages of the disease. Results were compared with those observed in healthy controls. Scrapie-infected sheep showed significant higher levels of PERK, BiP/Grp78 and PDI than healthy animals. As we observed before in models of spontaneous prion disease, PDI was the most altered ER stress marker between scrapie-infected and healthy sheep. Significantly increased intraneuronal and neuropil ubiquitinated deposits were observed in certain brain areas in scrapie-affected animals compared to controls. Our results suggest that the neuropathological and neuroinflammatory phenomena that develop in prion diseases cause endoplasmic reticulum stress in brain cells triggering the UPR. In addition, the significantly higher accumulation of ubiquitin aggregates in scrapie-affected animals suggests an impairment of the ubiquitin-proteasome system in natural scrapie. Therefore, these proteins may contribute as biomarkers and/or therapeutic targets for prion diseases.

10.
Animals (Basel) ; 13(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36978584

RESUMO

In neurodegenerative diseases, including prion diseases, cellular in vitro models appear as fundamental tools for the study of pathogenic mechanisms and potential therapeutic compounds. Two-dimensional (2D) monolayer cell culture systems are the most used cell-based assays, but these platforms are not able to reproduce the microenvironment of in vivo cells. This limitation can be surpassed using three-dimensional (3D) culture systems such as spheroids that more effectively mimic in vivo cell interactions. Herein, we evaluated the effect of scrapie prion infection in monolayer-cultured ovine bone marrow-derived mesenchymal stem cells (oBM-MSCs) and oBM-MSC-derived spheroids in growth and neurogenic conditions, analyzing their cell viability and their ability to maintain prion infection. An MTT assay was performed in oBM-MSCs and spheroids subjected to three conditions: inoculated with brain homogenate from scrapie-infected sheep, inoculated with brain homogenate from healthy sheep, and non-inoculated controls. The 3D conditions improved the cell viability in most cases, although in scrapie-infected spheroids in growth conditions, a decrease in cell viability was observed. The levels of pathological prion protein (PrPSc) in scrapie-infected oBM-MSCs and spheroids were measured by ELISA. In neurogenic conditions, monolayer cells and spheroids maintained the levels of PrPSc over time. In growth conditions, however, oBM-MSCs showed decreasing levels of PrPSc throughout time, whereas spheroids were able to maintain stable PrPSc levels. The presence of PrPSc in spheroids was also confirmed by immunocytochemistry. Altogether, these results show that a 3D culture microenvironment improves the permissiveness of oBM-MSCs to scrapie infection in growth conditions and maintains the infection ability in neurogenic conditions, making this model of potential use for prion studies.

11.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675131

RESUMO

Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathies or prion diseases, which are caused by an infectious isoform of the innocuous cellular prion protein (PrPC) known as PrPSc. DNA methylation, one of the most studied epigenetic mechanisms, is essential for the proper functioning of the central nervous system. Recent findings point to possible involvement of DNA methylation in the pathogenesis of prion diseases, but there is still a lack of knowledge about the behavior of this epigenetic mechanism in such neurodegenerative disorders. Here, we evaluated by immunohistochemistry the 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels in sheep and mouse brain tissues infected with scrapie. Expression analysis of different gene coding for epigenetic regulatory enzymes (DNMT1, DNMT3A, DNMT3B, HDAC1, HDAC2, TET1, and TET2) was also carried out. A decrease in 5mC levels was observed in scrapie-affected sheep and mice compared to healthy animals, whereas 5hmC displayed opposite patterns between the two models, demonstrating a decrease in 5hmC in scrapie-infected sheep and an increase in preclinical mice. 5mC correlated with prion-related lesions in mice and sheep, but 5hmC was associated with prion lesions only in sheep. Differences in the expression changes of epigenetic regulatory genes were found between both disease models, being differentially expressed Dnmt3b, Hdac1, and Tet1 in mice and HDAC2 in sheep. Our results support the evidence that DNA methylation in both forms, 5mC and 5hmC, and its associated epigenetic enzymes, take part in the neurodegenerative course of prion diseases.


Assuntos
Encéfalo , Príons , Scrapie , Animais , Camundongos , 5-Metilcitosina/metabolismo , Encéfalo/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Scrapie/genética , Scrapie/metabolismo , Ovinos , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , DNA Metiltransferase 3B
12.
Vet Pathol ; 60(1): 115-122, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384340

RESUMO

Trigonella foenum-graecum (fenugreek) is a legume widely used as a food supplement in humans and less frequently in ruminants. Toxicity has been described sporadically in ruminants grazing mature fenugreek plants or stubble; however, the pathological features are unclear. This report describes a natural outbreak of intoxication in cattle fed fenugreek straw and the experimental reproduction using 8 sheep and 8 goats. Affected cattle presented clinical signs approximately 1 month after consuming the straw and 100 of 400 cattle (25%) were affected, of which 60 of 100 (60%) died or were euthanized. Clinical signs were characterized by proprioceptive positioning defects with abnormal postures and weakness of hindlimbs. Forelimbs were also affected in severely affected animals, and cattle became recumbent. Locomotion was characterized by trembling, and some cattle showed high-stepping movements of their forelimbs and knuckled over in their fetlocks. Experimental intoxication induced clinical signs only in sheep and were similar to cattle, although with signs starting in the forelegs. Gross and microscopic lesions were similar in spontaneous and experimental intoxications. Macroscopic changes corresponded with muscular hemorrhages and edema, mainly surrounding the peripheral nerves. Microscopic examination only demonstrated lesions in the distal peripheral nerves, which included edema, hemorrhages, and Wallerian degeneration. Neurofilament immunohistochemistry revealed altered axon labeling and S100 showed a decrease in myelin intensity and loss of its typical compact arrangement around axons. Biochemical and hematological abnormalities included elevated levels of muscle and liver enzymes and thrombocytopenia. These findings indicate that fenugreek straw induces peripheral neuropathy in cattle and sheep, but not in goats.


Assuntos
Doenças dos Bovinos , Doenças das Cabras , Doenças do Sistema Nervoso Periférico , Doenças dos Ovinos , Trigonella , Humanos , Bovinos , Ovinos , Animais , Trigonella/química , Cabras , Reprodução , Doenças do Sistema Nervoso Periférico/veterinária , Edema/veterinária , Doenças dos Ovinos/induzido quimicamente
13.
Acta Neuropathol Commun ; 10(1): 179, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514160

RESUMO

Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature and its sporadic incidence worldwide is reminiscent of the incidence of idiopathic spontaneous prion diseases in humans, which account for more than 85% of the cases in humans. Hence, developing animal models that consistently reproduce this phenomenon of spontaneous PrP misfolding, is of importance to study the pathobiology of idiopathic spontaneous prion disorders. Transgenic mice overexpressing sheep PrPC with I112 polymorphism (TgShI112, 1-2 × PrP levels compared to sheep brain) manifest clinical signs of a spongiform encephalopathy spontaneously as early as 380 days of age. The brains of these animals show the neuropathological hallmarks of prion disease and biochemical analyses of the misfolded prion protein show a ladder-like PrPres pattern with a predominant 7-10 kDa band. Brain homogenates from spontaneously diseased transgenic mice were inoculated in several models to assess their transmissibility and characterize the prion strain generated: TgShI112 (ovine I112 ARQ PrPC), Tg338 (ovine VRQ PrPC), Tg501 (ovine ARQ PrPC), Tg340 (human M129 PrPC), Tg361 (human V129 PrPC), TgVole (bank vole I109 PrPC), bank vole (I109I PrPC), and sheep (AHQ/ARR and AHQ/AHQ churra-tensina breeds). Our analysis of the results of these bioassays concludes that the strain generated in this model is indistinguishable to that causing atypical scrapie (Nor98). Thus, we present the first faithful model for a bona fide, transmissible, ovine, atypical scrapie prion disease.


Assuntos
Doenças Priônicas , Príons , Scrapie , Camundongos , Animais , Ovinos , Humanos , Scrapie/metabolismo , Roedores/metabolismo , Príons/metabolismo , Camundongos Transgênicos , Arvicolinae/metabolismo
14.
PLoS Pathog ; 18(10): e1010900, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36206325

RESUMO

The role of the glycosylation status of PrPC in the conversion to its pathological counterpart and on cross-species transmission of prion strains has been widely discussed. Here, we assessed the effect on strain characteristics of bovine spongiform encephalopathy (BSE) isolates with different transmission histories upon propagation on a model expressing a non-glycosylated human PrPC. Bovine, ovine and porcine-passaged BSE, and variant Creutzfeldt-Jakob disease (vCJD) isolates were used as seeds/inocula in both in vitro and in vivo propagation assays using the non-glycosylated human PrPC-expressing mouse model (TgNN6h). After protein misfolding cyclic amplification (PMCA), all isolates maintained the biochemical characteristics of BSE. On bioassay, all PMCA-propagated BSE prions were readily transmitted to TgNN6h mice, in agreement with our previous in vitro results. TgNN6h mice reproduced the characteristic neuropathological and biochemical hallmarks of BSE, suggesting that the absence of glycans did not alter the pathobiological features of BSE prions. Moreover, back-passage of TgNN6h-adapted BSE prions to BoTg110 mice recovered the full BSE phenotype, confirming that the glycosylation of human PrPC is not essential for the preservation of the human transmission barrier for BSE prions or for the maintenance of BSE strain properties.


Assuntos
Síndrome de Creutzfeldt-Jakob , Encefalopatia Espongiforme Bovina , Príons , Animais , Ovinos , Bovinos , Camundongos , Humanos , Suínos , Encefalopatia Espongiforme Bovina/patologia , Camundongos Transgênicos , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/patologia , Príons/metabolismo , Polissacarídeos/metabolismo , Carneiro Doméstico/metabolismo
15.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806183

RESUMO

Prion diseases are diagnosed in the symptomatic stage, when the neuronal damage is spread throughout the central nervous system (CNS). The assessment of biological features that allow the detection of asymptomatic cases is needed, and, in this context, scrapie, where pre-symptomatic infected animals can be detected through rectal biopsy, becomes a good study model. Neurogranin (Ng) and neurofilament light chain (NfL) are proteins that reflect synaptic and axonal damage and have been studied as cerebrospinal fluid (CSF) biomarkers in different neurodegenerative disorders. In this study, we evaluated Ng and NfL both at the protein and transcript levels in the CNS of preclinical and clinical scrapie-affected sheep compared with healthy controls and assessed their levels in ovine CSF. The correlation between these proteins and the main neuropathological events in prion diseases, PrPSc deposition and spongiosis, was also assessed. The results show a decrease in Ng and NfL at the protein and gene expression levels as the disease progresses, and significant changes between the control and preclinical animals. On the contrary, the CSF levels of NfL increased throughout the progression of the disease. Negative correlations between neuropathological markers of prion disease and the concentration of the studied proteins were also found. Although further research is needed, these results suggest that Ng and NfL could act as biomarkers for neurodegeneration onset and intensity in preclinical cases of scrapie.


Assuntos
Doenças Priônicas , Scrapie , Animais , Biomarcadores/líquido cefalorraquidiano , Filamentos Intermediários , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Doenças Priônicas/líquido cefalorraquidiano , Scrapie/diagnóstico , Ovinos
16.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408945

RESUMO

Prion diseases are chronic and fatal neurodegenerative diseases characterized by the accumulation of disease-specific prion protein (PrPSc), spongiform changes, neuronal loss, and gliosis. Growing evidence shows that the neuroinflammatory response is a key component of prion diseases and contributes to neurodegeneration. Toll-like receptors (TLRs) have been proposed as important mediators of innate immune responses triggered in the central nervous system in other human neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. However, little is known about the role of TLRs in prion diseases, and their involvement in the neuropathology of natural scrapie has not been studied. We assessed the gene expression of ovine TLRs in four anatomically distinct brain regions in natural scrapie-infected sheep and evaluated the possible correlations between gene expression and the pathological hallmarks of prion disease. We observed significant changes in TLR expression in scrapie-infected sheep that correlate with the degree of spongiosis, PrPSc deposition, and gliosis in each of the regions studied. Remarkably, TLR4 was the only gene upregulated in all regions, regardless of the severity of neuropathology. In the hippocampus, we observed milder neuropathology associated with a distinct TLR gene expression profile and the presence of a peculiar microglial morphology, called rod microglia, described here for the first time in the brain of scrapie-infected sheep. The concurrence of these features suggests partial neuroprotection of the hippocampus. Finally, a comparison of the findings in naturallyinfected sheep versus an ovinized mouse model (tg338 mice) revealed distinct patterns of TLRgene expression.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Scrapie , Animais , Encéfalo/metabolismo , Gliose/patologia , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Priônicas/metabolismo , Scrapie/metabolismo , Ovinos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Transcriptoma
17.
Front Vet Sci ; 9: 824677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252421

RESUMO

Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathy (TSE). Scrapie occurs in sheep and goats, which are considered good natural animal models of these TSE. Changes in DNA methylation occur in the central nervous system (CNS) of patients suffering from prion-like neurodegenerative diseases, such as Alzheimer's disease. Nevertheless, potential DNA methylation alterations have not yet been investigated in the CNS of any prion disease model or naturally infected cases, neither in humans nor in animals. Genome-wide DNA methylation patterns were studied in the thalamus obtained from sheep naturally infected with scrapie at a clinical stage (n = 4) and from controls (n = 4) by performing a whole-genome bisulfite sequencing (WGBS) analysis. Ewes carried the scrapie-susceptible ARQ/ARQ PRNP genotype and were sacrificed at a similar age (4-6 years). Although the average genomic methylation levels were similar between the control and the scrapie animals, we identified 8,907 significant differentially methylated regions (DMRs) and 39 promoters (DMPs). Gene Ontology analysis revealed that hypomethylated DMRs were enriched in genes involved in transmembrane transport and cell adhesion, whereas hypermethylated DMRs were related to intracellular signal transduction genes. Moreover, genes highly expressed in specific types of CNS cells and those previously described to be differentially expressed in scrapie brains contained DMRs. Finally, a quantitative PCR (qPCR) validation indicated differences in the expression of five genes (PCDH19, SNCG, WDR45B, PEX1, and CABIN1) that matched the methylation changes observed in the genomic study. Altogether, these results suggest a potential regulatory role of DNA methylation in prion neuropathology.

18.
Sci Immunol ; 6(63): eabc2934, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559551

RESUMO

Bacillus Calmette-Guerin (BCG) is an attenuated bacterial vaccine used to protect against Mycobacterium tuberculosis (Mtb) in regions where infections are highly prevalent. BCG is currently delivered by the intradermal route, but alternative routes of administration are of great interest, including intrapulmonary delivery to more closely mimic respiratory Mtb infection. In this study, mice subjected to pulmonary delivery of green fluorescent protein­tagged strains of virulent (Mtb) and attenuated (BCG) mycobacteria were studied to better characterize infected lung cell subsets. Profound differences in dissemination patterns were detected between Mtb and BCG, with a strong tendency of Mtb to disseminate from alveolar macrophages (AMs) to other myeloid subsets, mainly neutrophils and recruited macrophages. BCG mostly remained in AMs, which promoted their activation. These preactivated macrophages were highly efficient in containing Mtb bacilli upon challenge and disrupting early bacterial dissemination, which suggests a potential mechanism of protection associated with pulmonary BCG vaccination. Respiratory BCG also protected mice against a lethal Streptococcus pneumoniae challenge, suggesting that BCG-induced innate activation could confer heterologous protection against respiratory pathogens different from Mtb. BCG drove long-term activation of AMs, even after vaccine clearance, and these AMs reacted efficiently upon subsequent challenge. These results suggest the generation of a trained innate memory-like response in AMs induced by pulmonary BCG vaccination.


Assuntos
Vacina BCG/imunologia , Tuberculose Pulmonar/imunologia , Animais , Modelos Animais de Doenças , Pulmão/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mycobacterium tuberculosis/imunologia
19.
Sci Rep ; 11(1): 17428, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465826

RESUMO

Pigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8-9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.


Assuntos
Encéfalo/patologia , Suscetibilidade a Doenças , Encefalopatia Espongiforme Bovina/patologia , Proteínas PrPSc/metabolismo , Príons/fisiologia , Scrapie/patologia , Animais , Encéfalo/metabolismo , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/transmissão , Feminino , Masculino , Camundongos , Scrapie/metabolismo , Scrapie/transmissão , Suínos , Porco Miniatura
20.
Mol Neurobiol ; 58(10): 5312-5326, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34283400

RESUMO

The non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease or Alzheimer's disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.


Assuntos
Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/genética , Toxina Tetânica/administração & dosagem , Animais , Encéfalo/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Projetos Piloto , Doenças Priônicas/patologia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...