RESUMO
Microparticles such as tire-road wear particles (TRWPs) and road pavement wear particles (RPWPs) are generated by the friction between tire tread and road surface. TRWPs and RPWPs on roads are dispersed through traffic and transferred to rivers and seas via runoff to accumulate in sediments. However, research on the generation of both TRWP and RPWP has rarely been conducted. In this study, the generation of both TRWP and RPWP was investigated using a novel tire abrasion simulator equipped with paved road and bus tire, and their contributions to the generation of microparticles were examined. Two types of model paved roads, asphalt and concrete pavements (AP and CP, respectively), were applied. TRWPs generated from the simulator exhibited morphologies very similar to those on real roads. The abrasion rate for the CP was 2.8 times higher than that for the AP. The wear particle size distributions peaked at the size ranges of 63-106 µm and 212-500 µm for the AP and CP, respectively. Totals of 84 wt% and 89 wt% of the wear particles were distributed in size ranges of 38-212 µm for the AP and 106-1000 µm for the CP. The tire wear particle (TWP) contents in the total wear particles of 38-500 µm were 21.7 wt% and 30.0 wt% for the AP and CP, respectively, and decreased as the particle size decreased. The weight of RPWP was higher than that of TWP in TRWP. Contributions from road pavement to the generation of wear particles of 38-500 µm were 3.6 and 2.3 times higher than those from tire tread for the AP and CP, respectively, and the contribution increased as the wear particle size decreased.
RESUMO
Non-exhaust PM emissions from vehicles in real road have been conducted, but heavy vehicles have rarely been tested. In this study, PM2.5 and PM10 samples were directly collected from a tire of a moving bus and the composition was analyzed to investigate the sources of PM emissions. Driving tests were conducted at a proving ground (PG) and a city road (CR). PM2.5 emissions considerably increased when the lateral force of the tire increased and the vehicle accelerated. The PM emission rate was higher in the PG test than in the CR test because of the harsher driving conditions at PG. The emission rates of PM10 in the PG and CR tests were higher than those of PM2.5 by approximately 6 and 11 times, respectively. In the PG and CR tests, the proportions of tire wear particles (TWPs) were 4.9% and 2.1% in the PM2.5 samples, and 6.8% and 8.2% in the PM10 samples, respectively. Furthermore, TWPs with PM (TWPPM) were generated by other sources: secondary production of TWPPM by fragmentation of TWPs and resuspension of TWPPM on the road. The contributions of other sources to TWP2.5 generation were at least 6% and 57% in the PG and CR tests, respectively, whereas that to TWP10 generation was at least 3.5% in the CR test. Iron derived from brake abrasion and mineral particles was observed in the PM samples, and the Fe concentrations were higher in the PM10 samples than in the PM2.5 samples by over 9 and 18 times for the PG and CR tests, respectively. Sulfur sources, such as TWPs, exhaust gas, and bitumen, were observed in the PM samples. Based on our findings, we recommend that road wear particles should be removed from roads to reduce PM emissions upon driving.
Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos , Emissões de Veículos/análise , Tamanho da PartículaRESUMO
With the development and wide applicability of rubber materials, it is imperative to determine their performance under various conditions. In this study, the effect of cyclic shear fatigue on natural-rubber-based anisotropic magnetorheological elastomer (MRE) with carbonyl iron particles (CIPs) was investigated under a magnetic field. An anisotropic MRE sample was prepared by moulding under a magnetic field. Cyclic shear fatigue tests were performed using a modified electromechanical fatigue system with an electromagnet. The storage modulus (G') and loss factor in the absence or presence of a magnetic field were measured using a modified dynamic mechanical analysis system. Under a magnetic field, fatigue exhibited considerable effects to the MRE, such as migration and loss of magnetised CIPs and suppressed increase in stiffness by reducing the energy loss in the strain cycle. Therefore, the G' of the MRE after fatigue under a magnetic field was lower than that after fatigue in the zero field. The performance of the MRE, such as absolute and relative magnetorheological effects, decreased after subjecting to cyclic shear fatigue. In addition, all measured results exhibited strain-dependent behaviour owing to the Payne effect.
RESUMO
Bioinspired soft ionic actuators, which exhibit large strain and high durability under low input voltages, are regarded as prospective candidates for future soft electronics. However, due to the intrinsic drawback of weak blocking force, the feasible applications of soft ionic actuators are limited until now. An electroactive artificial muscle electro-chemomechanically reinforced with 3D graphene-carbon nanotube-nickel heteronanostructures (G-CNT-Ni) to improve blocking force and bending deformation of the ionic actuators is demonstrated. The G-CNT-Ni heteronanostructure, which provides an electrically conductive 3D network and sufficient contact area with mobile ions in the polymer electrolyte, is embedded as a nanofiller in both ionic polymer and conductive electrodes of the ionic actuators. An ionic exchangeable composite membrane consisting of Nafion, G-CNT-Ni and ionic liquid (IL) shows improved tensile modulus and strength of up to 166% and 98%, respectively, and increased ionic conductivity of 0.254 S m-1 . The ionic actuator exhibits enhanced actuation performances including three times larger bending deformation, 2.37 times higher blocking force, and 4 h durability. The electroactive artificial muscle electro-chemomechanically reinforced with 3D G-CNT-Ni heteronanostructures offers improvements over current soft ionic actuator technologies and can advance the practical engineering applications.