Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 208, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798721

RESUMO

BACKGROUND: Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS: We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS: Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.


Assuntos
Criação de Animais Domésticos , Povo Asiático , Dieta , Leite , Animais , Cães/genética , Humanos , Tibet , Ruminantes
2.
Genome Biol ; 24(1): 73, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055782

RESUMO

BACKGROUND: Tibetans are genetically adapted to high-altitude environments. Though many studies have been conducted, the genetic basis of the adaptation remains elusive due to the poor reproducibility for detecting selective signatures in the Tibetan genomes. RESULTS: Here, we present whole-genome sequencing (WGS) data of 1001 indigenous Tibetans, covering the major populated areas of the Qinghai-Tibetan Plateau in China. We identify 35 million variants, and more than one-third of them are novel variants. Utilizing the large-scale WGS data, we construct a comprehensive map of allele frequency and linkage disequilibrium and provide a population-specific genome reference panel, referred to as 1KTGP. Moreover, with the use of a combined approach, we redefine the signatures of Darwinian-positive selection in the Tibetan genomes, and we characterize a high-confidence list of 4320 variants and 192 genes that have undergone selection in Tibetans. In particular, we discover four new genes, TMEM132C, ATP13A3, SANBR, and KHDRBS2, with strong signals of selection, and they may account for the adaptation of cardio-pulmonary functions in Tibetans. Functional annotation and enrichment analysis indicate that the 192 genes with selective signatures are likely involved in multiple organs and physiological systems, suggesting polygenic and pleiotropic effects. CONCLUSIONS: Overall, the large-scale Tibetan WGS data and the identified adaptive variants/genes can serve as a valuable resource for future genetic and medical studies of high-altitude populations.


Assuntos
Adaptação Fisiológica , Altitude , Adaptação Fisiológica/genética , Reprodutibilidade dos Testes , Seleção Genética , Humanos , Genoma Humano
3.
Proc Natl Acad Sci U S A ; 119(40): e2200421119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161951

RESUMO

Strong ultraviolet (UV) radiation at high altitude imposes a serious selective pressure, which may induce skin pigmentation adaptation of indigenous populations. We conducted skin pigmentation phenotyping and genome-wide analysis of Tibetans in order to understand the underlying mechanism of adaptation to UV radiation. We observe that Tibetans have darker baseline skin color compared with lowland Han Chinese, as well as an improved tanning ability, suggesting a two-level adaptation to boost their melanin production. A genome-wide search for the responsible genes identifies GNPAT showing strong signals of positive selection in Tibetans. An enhancer mutation (rs75356281) located in GNPAT intron 2 is enriched in Tibetans (58%) but rare in other world populations (0 to 18%). The adaptive allele of rs75356281 is associated with darker skin in Tibetans and, under UVB treatment, it displays higher enhancer activities compared with the wild-type allele in in vitro luciferase assays. Transcriptome analyses of gene-edited cells clearly show that with UVB treatment, the adaptive variant of GNPAT promotes melanin synthesis, likely through the interactions of CAT and ACAA1 in peroxisomes with other pigmentation genes, and they act synergistically, leading to an improved tanning ability in Tibetans for UV protection.


Assuntos
Adaptação Fisiológica , Altitude , Pigmentação da Pele , Aciltransferases/genética , Adaptação Fisiológica/genética , Etnicidade , Humanos , Melaninas/genética , Fenótipo , Pigmentação da Pele/genética , Tibet , Transcriptoma , Raios Ultravioleta
4.
Nat Commun ; 11(1): 4928, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004791

RESUMO

High-altitude adaptation of Tibetans represents a remarkable case of natural selection during recent human evolution. Previous genome-wide scans found many non-coding variants under selection, suggesting a pressing need to understand the functional role of non-coding regulatory elements (REs). Here, we generate time courses of paired ATAC-seq and RNA-seq data on cultured HUVECs under hypoxic and normoxic conditions. We further develop a variant interpretation methodology (vPECA) to identify active selected REs (ASREs) and associated regulatory network. We discover three causal SNPs of EPAS1, the key adaptive gene for Tibetans. These SNPs decrease the accessibility of ASREs with weakened binding strength of relevant TFs, and cooperatively down-regulate EPAS1 expression. We further construct the downstream network of EPAS1, elucidating its roles in hypoxic response and angiogenesis. Collectively, we provide a systematic approach to interpret phenotype-associated noncoding variants in proper cell types and relevant dynamic conditions, to model their impact on gene regulation.


Assuntos
Aclimatação/genética , Cromatina/metabolismo , Etnicidade/genética , Redes Reguladoras de Genes , Modelos Genéticos , Altitude , Doença da Altitude/etnologia , Doença da Altitude/genética , Doença da Altitude/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Células Cultivadas , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Resistência à Doença/genética , Feminino , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo , Polimorfismo de Nucleotídeo Único , Gravidez , Cultura Primária de Células , RNA-Seq , Elementos Reguladores de Transcrição/genética , Seleção Genética , Tibet/etnologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
5.
Natl Sci Rev ; 7(2): 391-402, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34692055

RESUMO

Structural variants (SVs) may play important roles in human adaptation to extreme environments such as high altitude but have been under-investigated. Here, combining long-read sequencing with multiple scaffolding techniques, we assembled a high-quality Tibetan genome (ZF1), with a contig N50 length of 24.57 mega-base pairs (Mb) and a scaffold N50 length of 58.80 Mb. The ZF1 assembly filled 80 remaining N-gaps (0.25 Mb in total length) in the reference human genome (GRCh38). Markedly, we detected 17 900 SVs, among which the ZF1-specific SVs are enriched in GTPase activity that is required for activation of the hypoxic pathway. Further population analysis uncovered a 163-bp intronic deletion in the MKL1 gene showing large divergence between highland Tibetans and lowland Han Chinese. This deletion is significantly associated with lower systolic pulmonary arterial pressure, one of the key adaptive physiological traits in Tibetans. Moreover, with the use of the high-quality de novo assembly, we observed a much higher rate of genome-wide archaic hominid (Altai Neanderthal and Denisovan) shared non-reference sequences in ZF1 (1.32%-1.53%) compared to other East Asian genomes (0.70%-0.98%), reflecting a unique genomic composition of Tibetans. One such archaic hominid shared sequence-a 662-bp intronic insertion in the SCUBE2 gene-is enriched and associated with better lung function (the FEV1/FVC ratio) in Tibetans. Collectively, we generated the first high-resolution Tibetan reference genome, and the identified SVs may serve as valuable resources for future evolutionary and medical studies.

6.
Genome Biol Evol ; 11(1): 72-85, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517636

RESUMO

Yak is one of the largest native mammalian species at the Himalayas, the highest plateau area in the world with an average elevation of >4,000 m above the sea level. Yak is well adapted to high altitude environment with a set of physiological features for a more efficient blood flow for oxygen delivery under hypobaric hypoxia. Yet, the genetic mechanism underlying its adaptation remains elusive. We conducted a cross-tissue, cross-altitude, and cross-species study to characterize the transcriptomic landscape of domestic yaks. The generated multi-tissue transcriptomic data greatly improved the current yak genome annotation by identifying tens of thousands novel transcripts. We found that among the eight tested tissues (lung, heart, kidney, liver, spleen, muscle, testis, and brain), lung and heart are two key organs showing adaptive transcriptional changes and >90% of the cross-altitude differentially expressed genes in lung display a nonlinear regulation. Pathways related to cell survival and proliferation are enriched, including PI3K-Akt, HIF-1, focal adhesion, and ECM-receptor interaction. These findings, in combination with the comprehensive transcriptome data set, are valuable to understanding the genetic mechanism of hypoxic adaptation in yak.


Assuntos
Adaptação Biológica , Altitude , Bovinos/metabolismo , Transcriptoma , Animais , Bovinos/genética , Expressão Gênica , Hipóxia/metabolismo , Pulmão/metabolismo , Masculino , Anotação de Sequência Molecular , Miocárdio/metabolismo , Transdução de Sinais
7.
Biochimie ; 147: 143-152, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29427740

RESUMO

With the increase of multidrug resistance, novel anti-leukemia agents with diverse mechanisms of action are required to address this challenge. NK-18, the core region of mammalian derived protein NK-lysin, effectively inhibited the viability of both multidrug resistant and sensitive leukemia cell lines. Meanwhile, this proliferation inhibition effect was not distinct between sensitive and multidrug resistant leukemia cell line. NK-18 showed selectivity between non-tumorigenic and tumorigenic cells. It preferentially bound to tumor cells whose outer leaflet with high phosphatidylserine content. NK-18 acted on the multidrug resistant leukemia cell line by a rapid pore formation on the cell membrane, it is not easy for K562/ADM cells developing resistance against NK-18. Furthermore, NK-18 could neutralize lipopolysaccharides by electrostatic attraction and reduce NO production. These research data demonstrated NK-18 possesses great advantage in the multidrug resistant leukemia treatment compared with conventional chemotherapies and it could be a potential candidate for further research.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Leucemia/patologia , Lipopolissacarídeos/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células K562 , Óxido Nítrico/biossíntese
8.
Zool Res ; 38(3): 155-162, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28585439

RESUMO

Tibetans are well adapted to high-altitude hypoxia. Previous genome-wide scans have reported many candidate genes for this adaptation, but only a few have been studied. Here we report on a hypoxia gene ( GCH1, GTP-cyclohydrolase I), involved in maintaining nitric oxide synthetase (NOS) function and normal blood pressure, that harbors many potentially adaptive variants in Tibetans. We resequenced an 80.8 kb fragment covering the entire gene region of GCH1 in 50 unrelated Tibetans. Combined with previously published data, we demonstrated many GCH1 variants showing deep divergence between highlander Tibetans and lowlander Han Chinese. Neutrality tests confirmed a signal of positive Darwinian selection on GCH1 in Tibetans. Moreover, association analysis indicated that the Tibetan version of GCH1 was significantly associated with multiple physiological traits in Tibetans, including blood nitric oxide concentration, blood oxygen saturation, and hemoglobin concentration. Taken together, we propose that GCH1 plays a role in the genetic adaptation of Tibetans to high altitude hypoxia.


Assuntos
Adaptação Fisiológica , Altitude , Etnicidade , GTP Cicloidrolase/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Adulto , Sequência de Bases , Feminino , GTP Cicloidrolase/genética , Variação Genética , Humanos , Masculino , Tibet
9.
Zool Res ; 38(3): 163-170, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28585440

RESUMO

The genetic adaptation of Tibetans to high altitude hypoxia likely involves a group of genes in the hypoxic pathway, as suggested by earlier studies. To test the adaptive role of the previously reported candidate gene EP300 (histone acetyltransferase p300), we conducted resequencing of a 108.9 kb gene region of EP300 in 80 unrelated Tibetans. The allele-frequency and haplotype-based neutrality tests detected signals of positive Darwinian selection on EP300 in Tibetans, with a group of variants showing allelic divergence between Tibetans and lowland reference populations, including Han Chinese, Europeans, and Africans. Functional prediction suggested the involvement of multiple EP300 variants in gene expression regulation. More importantly, genetic association tests in 226 Tibetans indicated significant correlation of the adaptive EP300 variants with blood nitric oxide (NO) concentration. Collectively, we propose that EP300 harbors adaptive variants in Tibetans, which might contribute to high-altitude adaptation through regulating NO production.


Assuntos
Adaptação Fisiológica , Altitude , Proteína p300 Associada a E1A/metabolismo , Etnicidade , Óxido Nítrico/metabolismo , Adulto , Sequência de Bases , Proteína p300 Associada a E1A/genética , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tibet
11.
Mol Genet Genomic Med ; 5(1): 76-84, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116332

RESUMO

BACKGROUND: Sherpas, a highlander population living in Khumbu region of Nepal, are well known for their superior climbing ability in Himalayas. However, the genetic basis of their adaptation to high-altitude environments remains elusive. METHODS: We collected DNA samples of 582 Sherpas from Nepal and Tibetan Autonomous Region of China, and we measured their hemoglobin levels and degrees of blood oxygen saturation. We genotyped 29 EPAS1 SNPs, two EGLN1 SNPs and the TED polymorphism (3.4 kb deletion) in Sherpas. We also performed genetic association analysis among these sequence variants with phenotypic data. RESULTS: We found similar allele frequencies on the tested 32 variants of these genes in Sherpas and Tibetans. Sherpa individuals carrying the derived alleles of EPAS1 (rs113305133, rs116611511 and rs12467821), EGLN1 (rs186996510 and rs12097901) and TED have lower hemoglobin levels when compared with those wild-type allele carriers. Most of the EPAS1 variants showing significant association with hemoglobin levels in Tibetans were replicated in Sherpas. CONCLUSION: The shared sequence variants and hemoglobin trait between Sherpas and Tibetans indicate a shared genetic basis for high-altitude adaptation, consistent with the proposal that Sherpas are in fact a recently derived population from Tibetans and they inherited adaptive variants for high-altitude adaptation from their Tibetan ancestors.

12.
Mol Biol Evol ; 34(4): 818-830, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096303

RESUMO

Tibetans are well adapted to the hypoxic environments at high altitude, yet the molecular mechanism of this adaptation remains elusive. We reported comprehensive genetic and functional analyses of EPAS1, a gene encoding hypoxia inducible factor 2α (HIF-2α) with the strongest signal of selection in previous genome-wide scans of Tibetans. We showed that the Tibetan-enriched EPAS1 variants down-regulate expression in human umbilical endothelial cells and placentas. Heterozygous EPAS1 knockout mice display blunted physiological responses to chronic hypoxia, mirroring the situation in Tibetans. Furthermore, we found that the Tibetan version of EPAS1 is not only associated with the relatively low hemoglobin level as a polycythemia protectant, but also is associated with a low pulmonary vasoconstriction response in Tibetans. We propose that the down-regulation of EPAS1 contributes to the molecular basis of Tibetans' adaption to high-altitude hypoxia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia/genética , Aclimatação/genética , Adaptação Biológica/genética , Adaptação Fisiológica/genética , Adulto , Altitude , Doença da Altitude/genética , Doença da Altitude/metabolismo , Animais , Regulação para Baixo , Etnicidade/genética , Feminino , Variação Genética/genética , Hemoglobinas , Humanos , Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Desequilíbrio de Ligação/genética , Masculino , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Seleção Genética , Tibet
13.
J Biol Chem ; 287(1): 748-756, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22105077

RESUMO

Soluble oligomers of amyloid-ß peptide (Aß) are emerging as the primary neurotoxic species in Alzheimer disease, however, whether the membrane is among their direct targets that mediate the downstream adverse effects remains elusive. Herein, we show that multiple soluble oligomeric Aß preparations, including Aß-derived diffusible ligand, protofibril, and zinc-induced Aß oligomer, exhibit much weaker capability to insert into the membrane than Aß monomer. Aß monomers prefer incorporating into membrane rather than oligomerizing in solution, and such preference can be reversed by the aggregation-boosting factor, zinc ion. Further analyses indicate that the membrane-embedded oligomers of Aß are derived from rapid assembly of inserted monomers but not due to the insertion of soluble Aß oligomers. By comparing the behavior of a panel of Aß truncation variants, we demonstrate that the intra- and extra-membrane oligomerization are mutually exclusive processes that proceed through distinct motif interplay, both of which require the action of amino acids 37-40/42 to overcome the auto-inhibitory interaction between amino acids 29-36 and the N-terminal portion albeit via different mechanisms. These results indicate that intra- and extra-membrane oligomerization of Aß are competing processes and emphasize a critical regulation of membrane on the behavior of Aß monomer and soluble oligomers, which may determine distinct neurotoxic mechanisms.


Assuntos
Peptídeos beta-Amiloides/química , Membrana Celular/metabolismo , Multimerização Proteica , Motivos de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Descoberta de Drogas , Cinética
14.
FASEB J ; 25(9): 3186-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21670067

RESUMO

C-reactive protein (CRP) has been implicated in the regulation of inflammation underlying coronary artery disease; however, little is known about the molecular mechanisms responsible for the expression of its pro- or anti-inflammatory activities. Here, we have identified the intrasubunit disulfide bond as a conserved switch that controls the structure and functions of CRP. Conformational rearrangement in human pentameric CRP to monomeric CRP (mCRP) is the prerequisite for this switch to be activated by reducing agents, including thioredoxin. Immunohistochemical analysis revealed 36-79% colocalization of thioredoxin and mCRP in human advanced coronary atherosclerotic lesions. Nonreduced mCRP was largely inert in activating human coronary artery endothelial cells (HCAECs), whereas reduced or cysteine-mutated mCRP evoked marked release of IL-8 and monocyte chemoattractant protein-1 from HCAECs, with ~50% increase at a concentration of 1 µg/ml. Reduced mCRP was ~4 to 40-fold more potent than mCRP in up-regulating adhesion molecule expression, promoting U937 monocyte adhesion to HCAECs, and inducing cytokine release from rabbit arteries ex vivo and in mice. These actions were primarily due to unlocking the lipid raft interaction motif. Therefore, expression of proinflammatory properties of CRP on endothelial cells requires sequential conformational changes, i.e., loss of pentameric symmetry followed by reduction of the intrasubunit disulfide bond.


Assuntos
Proteína C-Reativa/metabolismo , Proteína C-Reativa/farmacologia , Células Endoteliais/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteína C-Reativa/química , Células Cultivadas , LDL-Colesterol/metabolismo , Complemento C1q/metabolismo , Vasos Coronários/citologia , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Oxirredução , Ligação Proteica , Conformação Proteica , Coelhos
15.
FASEB J ; 23(6): 1806-16, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19136614

RESUMO

Emerging evidence indicates that in addition to native pentameric C-reactive protein (CRP), monomeric CRP (mCRP) also plays an active role in inflammation associated with cardiovascular diseases. mCRP activates endothelial cells, one of the critical events in cardiovascular diseases; however, the underlying molecular mechanisms are incompletely understood. Here we report that association of mCRP with human aortic and coronary artery endothelial cells is predominantly due to membrane insertion rather than binding to the surface proteins Fc gammaRs and proteoglycans. We identify lipid rafts as the preferential membrane microdomains for mCRP anchorage. mCRP binding depends on membrane cholesterol content and is synergistically mediated by the putative cholesterol binding consensus sequence of CRP (aa 35-47) and the C-terminal octapeptide (aa 199-206). Conversely, disrupting lipid rafts with methyl-beta cyclodextrin or nystatin abrogated mCRP-induced cytokine release, reactive oxygen species generation, and adhesion molecule expression in endothelial cells. Furthermore, ex vivo treatment of rabbit thoracic aorta and carotid artery segments with nystatin prevented mCRP-induced IL-8 release. Our data identify mCRP-lipid raft interaction as an important mechanism in mediating cellular responses to mCRP and lend further support to the notion of mCRP regulation of endothelial cell function during inflammation.


Assuntos
Proteína C-Reativa/química , Proteína C-Reativa/metabolismo , Células Endoteliais/metabolismo , Microdomínios da Membrana/metabolismo , Conformação Proteica , Animais , Proteína C-Reativa/genética , Células Cultivadas , Quimiocina CCL2/metabolismo , Colesterol/metabolismo , Selectina E/metabolismo , Células Endoteliais/citologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-8/metabolismo , Coelhos , Receptores de IgG/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA