Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131786, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657927

RESUMO

This study investigated impact of high-density lipoprotein (HDL) on thermal aggregation and gelling behavior of myosin in relation to varied pHs. Results revealed that HDL modified myosin structure before and after heating, with distinct effects observed at varied pH. Under pH 5.0, both myosin and HDL-MS exhibited larger aggregates and altered microstructure; at pH 7.0 and 9.0, HDL inhibited myosin aggregation, resulting in enhanced solubility, reduced turbidity and particle size. Comparative analysis of surface hydrophobicity, free sulfhydryl groups and secondary structure highlighted distinct thermal aggregation behavior between MS and HDL-MS, with the latter showing inhibitory effects under neutral or alkaline conditions. Gelation behavior was enhanced at pH 7.0 with maximum strength, hardness, water-holding capacity and rheological properties. Under acidic pH, excessive protein aggregation resulted in increased whiteness and rough microstructure with granular aggregates. Under alkaline pH, gel network structure was weaker, possibly due to higher thermal stability of protein molecules. Scanning electron microscopy revealed expanded HDL protein particles at pH 7.0, accounting for decreased gel strength and altered rheological properties compared with myosin gel. Overall, the results indicated a positive role of HDL at varied pH in regulating thermal aggregation of myosin and further impacting heat-induced gel characteristics.


Assuntos
Géis , Temperatura Alta , Lipoproteínas HDL , Miosinas , Agregados Proteicos , Reologia , Concentração de Íons de Hidrogênio , Miosinas/química , Miosinas/metabolismo , Lipoproteínas HDL/química , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Animais , Tamanho da Partícula
2.
Food Chem ; 429: 136836, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453331

RESUMO

During storage and processing, muscle proteins, e.g. myosin and myoglobin, will inevitably undergo degeneration, which is thus accompanied by quality deterioration of muscle foods. Some exogenous additives have been widely used to interact with muscle proteins to stabilize the quality of muscle foods. Molecular docking and molecular dynamics simulation (MDS) are regarded as promising tools for recognizing dynamic molecular information at atomic level. Molecular docking and MDS can explore chemical bonds, specific binding sites, spatial structure changes, and binding energy between additives and muscle proteins. Development and workflow of molecular docking and MDS are systematically summarized in this review. Roles of molecular simulations are, for the first time, comprehensively discussed in recognizing the interaction details between muscle proteins and exogenous additives aimed for stabilizing color, texture, flavor, and other properties of muscle foods. Finally, research directions of molecular docking and MDS for improving the qualities of muscle foods are discussed.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Musculares , Simulação de Acoplamento Molecular , Sítios de Ligação , Ligação Proteica
3.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239320

RESUMO

Understanding mechanisms of myofibrillar protein gelation is important for development of gel-type muscle foods. The protein-protein interactions are largely responsible for the heat-induced gelation. Exogenous additives have been extensively applied to improve gelling properties of myofibrillar proteins. Research has been carried out to investigate effects of different additives on protein gelation, among which low molecular substances as one of the most abundant additives have been recently implicated in the modifications of intermolecular interactions. In this review, the processes of myosin dissociation under salt and the subsequent interaction via intermolecular forces are elaborated. The underlying mechanisms focusing on the role of low molecular additives in myofibrillar protein interactions during gelation particularly in relation to modifications of the intermolecular forces are comprehensively discussed, and six different additives i.e. metal ions, phosphates, amino acids, hydrolysates, phenols and edible oils are involved. The promoting effect of low molecular additives on protein interactions is highly attributed to the strengthened hydrophobic interactions providing explanations for improved gelation. Other intermolecular forces i.e. covalent bonds, ionic and hydrogen bonds could also be influenced depending on varieties of additives. This review can hopefully be used as a reference for the development of gel-type muscle foods in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...