Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 1-11, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39128196

RESUMO

To promote the greening and economization of industrial production, the development of advanced catalyst manufacturing technology with high activity and low cost is an indispensable part. In this study, nitrogen-doped hollow carbon spheres (NHCSs) were used as anchors to construct a supramolecular coating formed by the self-assembly of boron clusters and ß-cyclodextrin by surface crystallization strategy, with the help of the weak reducing agent characteristics of boron clusters, highly dispersed ultra-small nano-palladium particles were in-situ embedded on the surface of NHCSs. The deoxygenation hydrogenation of nitroaromatics and the reduction of nitrate to ammonia were used as the representatives of thermal catalytic reduction and electrocatalytic reduction respectively. The excellent properties of the constructed Pd/NHCSs were proved by the probe reaction. In the catalytic hydrogenation of nitroaromatics to aminoaromatics, the reaction kinetic rate and activation energy are at the leading level. At the same time, the constructed Pd/NHCSs can also electrocatalytically reduce nitrate to high value-added ammonia with high activity and selectivity, and the behavior of Pd/NHCSs high selectivity driving nitrate conversion was revealed by density functional theory and in situ attenuated total reflection Fourier transform infrared (ATRFTIR) technique. These results all reflect the feasibility and superiority of in-situ anchoring ultra-small nano-metals as catalysts by surface crystallization to build a supramolecular cladding with reducing properties, which is an effective way to construct high-activity and low-cost advanced catalysts.

2.
Cancer Commun (Lond) ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402748

RESUMO

BACKGROUND: Immunotherapy has revolutionized the therapeutical regimen for nasopharyngeal carcinoma (NPC), yet its response rate remains insufficient. Programmed death-ligand 1 (PD-L1) on small extracellular vesicles (sEVs) mediates local and peripheral immunosuppression in tumors, and the mechanism of PD-L1 loading into these vesicles is garnering increasing attention. Latent membrane protein 1 (LMP1), a key viral oncoprotein expressed in Epstein-Barr virus (EBV)-positive NPC, contributes to remodeling the tumor microenvironment. However, the precise mechanisms by which LMP1 modulates tumor immunity in NPC remain unclear. Here, we aimed to investigate the roles and regulatory mechanisms of LMP1 and sEV PD-L1 in NPC immune evasion. METHODS: We analyzed the impact of LMP1 on tumor-infiltrating lymphocyte abundance in NPC tissues and humanized tumor-bearing mouse models using multiplex immunofluorescence (mIF) and flow cytometry, respectively. Transmission electron microscopy and nanoparticle tracking analysis were employed to characterize sEVs. Immunoprecipitation-mass spectrometry was utilized to identify proteins interacting with LMP1. The regulatory effects of sEVs on tumor microenvironment were assessed by monitoring CD8+ T cell proliferation and interferon-γ (IFN-γ) expression via flow cytometry. Furthermore, the expression patterns of LMP1 and downstream regulators in NPC were analyzed using mIF and survival analysis. RESULTS: High LMP1 expression in NPC patient specimens and mouse models was associated with restricted infiltration of CD8+ T cells. Additionally, LMP1 promoted sEV PD-L1 secretion, leading to inhibition of CD8+ T cell viability and IFN-γ expression in vitro. Mechanistically, LMP1 recruited apoptosis-linked gene 2-interacting protein X (ALIX) through its intracellular domain and bound PD-L1 through its transmembrane domain, thereby facilitating the loading of PD-L1 into ALIX-dependent sEVs. Disruption of ALIX diminished LMP1-induced sEV PD-L1 secretion and enhanced the anti-tumor immunity of CD8+ T cells both in vitro and in vivo. Moreover, increased expression levels of LMP1 and ALIX were positively correlated with enhanced immunosuppressive features and worse prognostic outcomes in NPC patients. CONCLUSION: Our findings uncovered the mechanism by which LMP1 interacts with ALIX and PD-L1 to form a trimolecular complex, facilitating PD-L1 loading into ALIX-dependent sEV secretion pathway, ultimately inhibiting the anti-tumor immune response in NPC. This highlights a novel target and prognostic marker for NPC immunotherapy.

3.
Int J Mol Sci ; 25(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39456694

RESUMO

Soil salinization limits rice growth and is an important restriction on grain yield. Jacalin-related lectins are involved in multiple stress responses, but their role in salt stress responses and use as molecular markers for salt tolerance remain poorly understood. Salt stress treatments and RT-qPCR analyses of Sea Rice 86 (SR86), 9311, and Nipponbare (Nip) showed that OsJRL45 and OsJRL40 enhanced tolerance of salt stress in SR86. Molecular markers based on sequence differences in SR86 and the salt-sensitive variety, 9311, in the intergenic region between OsJRL45 and OsJRL40 were validated in recombinant inbred lines derived from SR86 and 9311, hybrid populations, and common rice varieties. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that OsJRL45 and OsJRL40 interacted. Co-transformation of Nip with OsJRL45 and OsJRL40 derived from SR86 had no effect on the mature phenotype in T2 plants; however, salt stress at the three-leaf stage led to significant increases in CAT, POD, SOD, and Pro contents, but reduced MDA content in transgenic plants. Transcriptomic analysis identified 834 differentially expressed genes in transgenic plants under salt stress. GO and KEGG enrichment analyses indicated that metabolic pathways related to antioxidant responses and osmotic balance were crucial for salt-stress tolerance. Thus, molecular markers based on nucleotide differences in OsJRL45 and OsJRL40 provide a novel method for identifying salt-tolerant rice varieties.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Lectinas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Tolerância ao Sal/genética , Lectinas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Marcadores Genéticos
5.
Mol Cell Biochem ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39446251

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid deposition within the arterial intima, as well as fibrous tissue proliferation and calcification. AS has long been recognized as one of the primary pathological foundations of cardiovascular diseases in humans. Its pathogenesis is intricate and not yet fully elucidated. Studies have shown that AS is associated with oxidative stress, inflammatory response, lipid deposition, and changes in cell phenotype. Unfortunately, there is currently no effective prevention or targeted treatment for AS. The rapid advancement of omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, has opened up novel avenues to elucidate the fundamental pathophysiology and associated mechanisms of AS. Here, we review articles published over the past decade and focus on the current status, challenges, limitations, and prospects of omics in AS research and clinical practice. Emphasizing potential targets based on omics technologies will improve our understanding of this pathological condition and assist in the development of potential therapeutic approaches for AS-related diseases.

6.
Stem Cell Res Ther ; 15(1): 350, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380045

RESUMO

BACKGROUND: The histone-lysine N-methyltransferase SMYD1, which is specific to striated muscle, plays a crucial role in regulating early heart development. Its deficiency has been linked to the occurrence of congenital heart disease. Nevertheless, the precise mechanism by which SMYD1 deficiency contributes to congenital heart disease remains unclear. METHODS: We established a SMYD1 knockout pluripotent stem cell line and a doxycycline-inducible SMYD1 expression pluripotent stem cell line to investigate the functions of SMYD1 utilizing an in vitro-directed myocardial differentiation model. RESULTS: Cardiomyocytes lacking SMYD1 displayed drastically diminished differentiation efficiency, concomitant with heightened proliferation capacity of cardiac progenitor cells during the early cardiac differentiation stage. These cellular phenotypes were confirmed through experiments inducing the re-expression of SMYD1. Transcriptome sequencing and small molecule inhibitor intervention suggested that the GSK3ß/ß-catenin&ERK signaling pathway was involved in the proliferation of cardiac progenitor cells. Chromatin immunoprecipitation demonstrated that SMYD1 acted as a transcriptional activator of GSK3ß through histone H3 lysine 4 trimethylation. Additionally, dual-luciferase analyses indicated that SMYD1 could interact with the promoter region of GSK3ß, thereby augmenting its transcriptional activity. Moreover, administering insulin and Insulin-like growth factor 1 can enhance the efficacy of myocardial differentiation in SMYD1 knockout cells. CONCLUSIONS: Our research indicated that the participation of SMYD1 in the GSK3ß/ß-catenin&ERK signaling cascade modulated the proliferation of cardiac progenitor cells during myocardial differentiation. This process was partly reliant on the transcription of GSK3ß. Our research provided a novel insight into the genetic modification effect of SMYD1 during early myocardial differentiation. The findings were essential to the molecular mechanism and potential interventions for congenital heart disease.


Assuntos
Diferenciação Celular , Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Histona-Lisina N-Metiltransferase , Miócitos Cardíacos , beta Catenina , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , beta Catenina/metabolismo , beta Catenina/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Sistema de Sinalização das MAP Quinases , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Histonas/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Linhagem Celular , Proteínas de Ligação a DNA , Fatores de Transcrição
7.
J Inflamm Res ; 17: 6005-6021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253564

RESUMO

Purpose: The effects of the step-jump approach on the survival and prognosis of infected pancreatic necrosis (IPN) patients have not yet been determined. Patients and Methods: Between November 2018 and June 2023, 188 patients were included in this study. There were 144 patients in the step-up group (the SU group) and 44 in the step-jump group (the SJ group). In the SU group, patients successfully treated with percutaneous catheter drainage (PCD) alone were classified into the SU-1 group (n=101), while those requiring additional surgery after PCD were categorized into the SU-2 group (n=43). In the SJ group, patients who underwent minimally invasive necrosectomy (MIN) without PCD were assigned to the SJ-1 group (n=34), whereas those who initially underwent PCD followed by immediate open surgery were placed in the SJ-2 group (n=10). Propensity score matching (PSM) was used to mitigate bias. Results: After PSM, a total of 34 pairs were successfully matched. A comparison of the SU group with the SJ-1 group (upfront MIN without PCD) revealed similar mortality rates (P=0.239); however, the incidences of multiple drug-resistant organisms (MDROs) (P=0.029) and surgical complications (P<0.001) were significantly lower in the SJ-1 group. After comparing the SU-2 and SJ-2 groups (patients who underwent direct open necrosectomy without MIN after PCD failure), the incidences of surgical complications and MDRO in the SJ-2 group were significantly lower (P<0.05). Conclusion: Compared with the step-up approach, the step-jump approach is safer and more effective and can significantly reduce the incidence of MDRO and surgical complications.

8.
Adv Mater ; 36(44): e2410125, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39267437

RESUMO

The electroreduction of CO2 offers a sustainable route to generate synthetic fuels. Cu-based catalysts have been developed to produce value-added C2+ alcohols; however, the limited understanding of complex C-C coupling and reaction pathway hinders the development of efficient CO2-to-C2+ alcohols catalysts. Herein, a Cu-free, highly mesoporous NiO catalyst, derived from the microphase separation of a block copolymer, is reported, which achieves selective CO2 reduction toward ethanol with a Faradaic efficiency of 75.2% at -0.6 V versus RHE. The dense mesopores create a favorable local reaction environment with CO2-rich and H2O-deficient interfaces, suppressing hydrogen evolution and maximizing catalytic activity of NiO for CO2 reduction. Importantly, the C1-feeding experiments, in situ spectroscopy, and theoretical calculations consistently show that the direct coupling of *CO2 and *COOH is responsible for C-C bond formation on NiO, and subsequent reduction of *CO2-COOH to ethanol is energetically facile through the *COCOH and *OC2H5 pathway. The unconventional C-C coupling mechanism on NiO, in contrast to the *CO dimerization on Cu, is triggered by strong CO2 adsorption on the polarized Ni2+-O2- sites. The work not only demonstrates a highly selective Cu-free Ni-based alternative for CO2-to-C2+ alcohols transformation but also provides a new perspective on C-C coupling toward C2+ synthesis.

9.
Vet Parasitol ; 331: 110296, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217762

RESUMO

Coccidiosis is an important parasitic disease that has serious adverse effects on the global poultry industry. The mechanism by which the pathogenic factors of Eimeria tenella damage host cells is unknown. Some kinases from the rhoptry compartment can regulate apoptosis of host cells. This study focused on revealing the role and critical nodes of E. tenella rhoptry protein (EtROP) 38 in controlling the apoptosis of host cells via the P38 mitogen-activated protein kinase (MAPK) signaling pathway. The cells were treated with EtROP38 protein, siRNA p38MAPK, or both. The rate of infection, apoptosis, and the dynamic changes in the expression and activation of key factor genes of the P38MAPK signaling pathway in host cells infected with E. tenella were measured. The results showed that the addition of EtROP38 and/or knockdown of the host cells p38 gene reduced the apoptosis rate of cecal epithelial cells (CECS), decreased the mRNA expressions of p38, p53, c-myc, c-fos, and c-jun and increased the expression of p65, decreased the protein expressions of c-myc, c-fos, and c-jun, decreased the p38 protein phosphorylation level, and increased the p65 protein phosphorylation level in CECS. When E. tenella was inoculated for 4-96 h, the addition of Et ROP38 and/or host cell p38 knockdown both increased the infection rate of host cells, and this effect was more pronounced with the addition of EtROP38 with the host cell p38 knockdown. These observations indicate that E. tenella can inhibits the activation of the p38MAPK signaling pathway in host cells via EtROP38, which suppresses apoptosis in host cells.


Assuntos
Apoptose , Galinhas , Eimeria tenella , Proteínas Quinases p38 Ativadas por Mitógeno , Eimeria tenella/fisiologia , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Coccidiose/parasitologia , Coccidiose/veterinária , Sistema de Sinalização das MAP Quinases , Células Epiteliais/parasitologia , Ceco/parasitologia , Transdução de Sinais
10.
PhytoKeys ; 246: 15-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234411

RESUMO

Phlomoidesbomiensis, a new species in Bomi County, Xizang, China, was described and illustrated. In addition, Phlomoideslongidentata, previously only known from Nepal and Bhutan, is newly recorded from Dingri County, Xizang, China. The phylogenetic placement of both species within the genus was analysed using nine plastid DNA markers (atpB-rbcL, psbA-trnH, rpl16, rpl32-trnL, rps16, trnK, trnL-trnF, trnS-trnG, trnT-trnL). Both species have brown-black trichomes inside the upper corolla lip and nested within the same subclade of Clade II. A diagnostic key to the Phlomoides species belonging to this subclade is provided.

11.
Plant Physiol Biochem ; 216: 109091, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39244886

RESUMO

Microbe-material hybrid systems which facilitate the solar-driven synthesis of high-value chemicals, harness the unique capabilities of microbes, maintaining the high-selectivity catalytic abilities, while concurrently incorporating exogenous materials to confer novel functionalities. The effective assembly of both components is essential for the overall functionality of microbe-material hybrid systems. Herein, we conducted a critical review of microbe-material hybrid systems for solar energy conversion focusing on the perspective of interface assembly strategies between microbes and materials, which are categorized into five types: cell uptake, intracellular synthesis, extracellular mineralization, electrostatic adsorption, and cell encapsulation. Moreover, this review elucidates the mechanisms by which microbe-material hybrid systems convert elementary substrates, such as carbon dioxide, nitrogen, and water, into high-value chemicals or materials for energy generation.

12.
Front Microbiol ; 15: 1473238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323883

RESUMO

Introduction: Weak aerobic stability is a notable challenge for whole-plant corn silage, particularly in hot and humid regions. Acetobacter is commonly regarded as an indicator of aerobic deterioration in silage, yet its precise role in fermentation and during aerobic exposure, as well as the factors that promote its growth, remain insufficiently understood. Methods: In this study, whole-plant corn silage was prepared using a bagged method with controlled dry matter (DM) content at 20%, 25%, and 30%, and initial concentrations of A. pasteurianus at 40%, 50%, and 60%. The silage was stored for 60 days under varying temperatures (20°C, 30°C, and 40°C). Following the anaerobic storage phase, the silage was exposed to air at room temperature (20-25°C) for 7 days, both with and without A. pasteurianus inoculation. Results: The results demonstrated that A. pasteurianus did not impact the nutritional value of the silage during anaerobic fermentation, maintaining a low pH (< 3.80). However, during aerobic exposure, the presence of A. pasteurianus significantly reduced the aerobic stability of the silage. The microbial community shifted from primarily Klebsiella species initially to Lactobacillus and Acetobacter species post-ensiling. During the aerobic exposure phase, A. pasteurianus and A. fabarum became the dominant species. Response Surface Methodology (RSM) analysis identified optimal conditions for the proliferation of A. pasteurianus during the aerobic phase, which occurred at 28°C, 25% DM, and 52% initial concentration at 3 ml/kg. Discussion: These findings confirm that A. pasteurianus plays a critical role in reducing the aerobic stability of whole-plant corn silage. Additionally, the study identifies the optimal conditions that favor the proliferation of A. pasteurianus, offering valuable insights for the development of strategies to prevent and control this bacterium, thereby improving the aerobic stability of silage in hot and humid regions.

13.
Vasc Med ; 29(5): 470-482, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39212227

RESUMO

Introduction: Renin and prorenin promote the proliferation of vascular smooth muscle cells (VSMCs) through the (pro)renin receptor, or (P)RR, to promote restenosis occurrence. This study aimed to explore whether prorenin promoted the proliferation of VSMCs in a (P)RR-mediated Ang II-independent manner. Methods: Losartan and PD123319 were used to block the interaction between (P)RR and angiotensin in vitro. Cells were treated with renin, platelet-derived growth factor (PDGF), or RNAi-(P)RR, either jointly or individually. Cell proliferation was measured via Cell Counting Kit-8 (CCK-8) and flow cytometry methods; moreover, real-time polymerase chain reaction (RT-PCR) and Western blot (WB) assays were used to detect the expression of cyclin D1, proliferating cell nuclear antigen (PCNA), (P)RR, NOX1, and phosphatidylinositol 3-kinase (PI3K)/AKT signaling proteins. Immunofluorescence staining was conducted to measure the expression of (P)RR, and the levels of renin, PDGF-BB, inflammatory factors, and oxidative stress were determined by using enzyme-linked immunosorbent assay (ELISA). Moreover, a balloon catheter was used to enlarge the carotid artery of the Sprague Dawley rats. PRO20 was applied to identify angiotensin II (Ang II). The hematoxylin and eosin, RT-PCR, and WB results validated the cell assay results. Results: Renin promoted the proliferation of rat VSMCs by enhancing cell viability and cell cycle protein expression when Ang II was blocked, but silencing (P)RR inhibited this effect. Furthermore, renin enhanced NOX1-mediated oxidative stress and inflammation by activating the extracellular signal-regulated kinase 1/2 (ERK1/2)-AKT pathway in vitro. Similarly, the inhibition of (P)RR resulted in the opposite phenomenon. Importantly, the inhibition of (P)RR inhibited neointimal hyperplasia in vivo after common carotid artery injury by restraining NOX1-mediated oxidative stress through the downregulation of the ERK1/2-AKT pathway. The animal study confirmed these findings. Conclusion: Renin and (P)RR induced VSMC proliferation and neointimal hyperplasia by activating oxidative stress, inflammation, and the ERK1/2-AKT pathway in an Ang II-independent manner.


Assuntos
Lesões das Artérias Carótidas , Hiperplasia , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Estresse Oxidativo , Receptor de Pró-Renina , Receptores de Superfície Celular , Renina , Animais , Masculino , Ratos , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Renina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais
14.
Chin J Integr Med ; 30(10): 877-885, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39172302

RESUMO

OBJECTIVES: To evaluate the effectiveness and safety of Qishen Yiqi Dripping Pill (QSYQ) in patients with acute coronary syndrome (ACS) after percutaneous coronary intervention (PCI). METHODS: This multicentre prospective cohort study was conducted at 40 centers in China. Patients with ACS after PCI entered either the QSYQ or Western medicine (WM) groups naturally based on whether they had received QSYQ before enrollment. QSYQ group received QSYQ (0.52 g, 3 times a day for 12 months) in addition to WM. The primary endpoint included cardiac death, non-fatal myocardial infarction, and urgent revascularization. The secondary endpoint included rehospitalization due to ACS, heart failure, stroke, and other thrombotic events. Quality of life was assessed by the Seattle Angina Questionnaire (SAQ). RESULTS: A total of 936 patients completed follow-up of the primary endpoint from February 2012 to December 2018. Overall, 487 patients received QSYQ and WM. During a median follow-up of 566 days (inter quartile range, IQR, 517-602), the primary endpoint occurred in 46 (9.45%) and 65 (14.48%) patients in QSYQ and WM groups respectively [adjusted hazard ratio (HR) 0.60, 95% confidence interval (CI) 0.41-0.90; P=0.013]. The secondary endpoint occurred in 61 (12.53%) and 74 (16.48%) patients in QSYQ and WM groups, respectively (adjusted HR 0.76, 95% CI 0.53-1.09; P=0.136). In sensitivity analysis, the results still demonstrated that WM combined with QSYQ reduced the risk of the primary endpoint (HR 0.67, 95% CI 0.46-0.98; P=0.039). Moreover, QSYQ improved the disease perception domain of the SAQ (P<0.05). CONCLUSION: In patients with ACS after PCI, QSYQ combined with WM reduced the incidence of the primary endpoint. These findings provide a promising option for managing ACS after PCI and suggest the potential treatment for reducing the risk of primary endpoint included cardiac death, non-fatal myocardial infarction, and urgent revascularization through intermittent administration of QSYQ (Registration No. ChiCTR-OOC-14005552).


Assuntos
Síndrome Coronariana Aguda , Medicamentos de Ervas Chinesas , Intervenção Coronária Percutânea , Humanos , Síndrome Coronariana Aguda/tratamento farmacológico , Síndrome Coronariana Aguda/terapia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/efeitos adversos , Intervenção Coronária Percutânea/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Estudos Prospectivos , Estudos de Coortes , Qualidade de Vida
15.
Small ; : e2402382, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118549

RESUMO

Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra-strong C2H6 nano-trap, CuIn(3-ain)4 is presented, which utilizes multiple guest-host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra-strong C2H6 nano-trap exhibits the high C2H6 (2.38 mmol g-1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L-1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3-ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single-crystal X-ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3-ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures.

16.
BMC Cancer ; 24(1): 1028, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164643

RESUMO

BACKGROUND: The combination of immunotherapy and antiangiogenic therapy has shown potential in the treatment of numerous malignant tumors, but limited evidence was available for soft tissue sarcomas (STS). Therefore, the aim of the present study is to assess the efficacy and safety of immunotherapy in conjunction with antiangiogenic therapy in patients diagnosed with advanced STS (aSTS). METHODS: The study enrolled patients with aSTS from January 2014 to October 2022. Eligible participants had previously received anthracycline-based chemotherapy, presented with an anthracycline-resistant sarcoma subtype, or were ineligible for anthracycline treatment due to medical conditions. Following enrollment, these patients received a combination of immunotherapy and antiangiogenic therapy. The primary endpoints were the objective response rate (ORR) and progression-free survival (PFS), while the secondary endpoints included the disease control rate (DCR), overall survival (OS), and the incidence of adverse events. RESULTS: Fifty-one patients were included in this cohort study. The median duration of follow-up was 15.8 months. The ORR and DCR were 17.6%, and 76.5%, respectively. The median PFS (mPFS) was 5.8 months (95% CI: 4.8-6.8) for all patients, and the median OS had not been reached as of the date cutoff. Multivariate analysis indicated that Eastern Cooperative Oncology Group performance status of 0-1 and ≤ second-line treatment were positive predictors for both PFS and OS. Patients with alveolar soft part sarcoma or clear cell sarcoma had longer mPFS (16.2 months, 95% CI: 7.8-25.6) when compared to those with other subtypes of STS (4.4 months, 95% CI: 1.4-7.5, P < 0.001). Among the observed adverse events, hypertension (23.5%), diarrhea (17.6%), and proteinuria (17.6%) were the most common, with no treatment-related deaths reported. CONCLUSION: The combination of immunotherapy and antiangiogenic agents showed promising efficacy and acceptable toxicity in patients with aSTS, especially those with alveolar soft part sarcoma or clear cell sarcoma.


Assuntos
Inibidores da Angiogênese , Imunoterapia , Sarcoma , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/efeitos adversos , Inibidores da Angiogênese/administração & dosagem , Adulto , Sarcoma/tratamento farmacológico , Sarcoma/terapia , Sarcoma/mortalidade , Sarcoma/patologia , Idoso , Imunoterapia/métodos , Imunoterapia/efeitos adversos , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Intervalo Livre de Progressão , Adulto Jovem , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos
17.
Environ Int ; 190: 108946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39151267

RESUMO

Microplastics (MPs) are of increasing concern due to their role as reservoirs for antibiotic resistance genes (ARGs) and pathogens. To date, few studies have explored the influence of anthropogenic activities on ARGs and mobile genetic elements (MGEs) within various riverine MPs, in comparison to their natural counterparts. Here an in-situ incubation was conducted along heavily anthropogenically-impacted Houxi River to characterize the geographical pattern of antibiotic resistome, mobilome and pathogens inhabiting MPs- and leaf-biofilms. The metagenomics result showed a clear urbanization-driven profile in the distribution of ARGs, MGEs and pathogens, with their abundances sharply increasing 4.77 to 19.90 times from sparsely to densely populated regions. The significant correlation between human fecal marker crAssphage and ARG (R2 = 0.67, P=0.003) indicated the influence of anthropogenic activity on ARG proliferation in plastisphere and natural leaf surfaces. And mantel tests and random forest analysis revealed the impact of 17 socio-environmental factors, e.g., population density, antibiotic concentrations, and pore volume of materials, on the dissemination of ARGs. Partial least squares-path modeling further unveiled that intensifying human activities not only directly boosted ARGs abundance but also exerted a comparable indirect impact on ARGs propagation. Furthermore, the polyvinylchloride plastisphere created a pathogen-friendly habitat, harboring higher abundances of ARGs and MGEs, while polylactic acid are not likely to serve as vectors for pathogens in river, with a lower resistome risk score than that in leaf-biofilms. This study highlights the diverse ecological risks associated with the dissemination of ARGs and pathogens in varied MPs, offering insights for the policymaking of usage and control of plastics within urbanization.


Assuntos
Rios , Urbanização , Rios/microbiologia , Rios/química , Humanos , Resistência Microbiana a Medicamentos/genética , Metagenômica , Antibacterianos/farmacologia , Microplásticos
18.
Ageing Res Rev ; 101: 102479, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214170

RESUMO

BACKGROUND: The role of gut bacteria in preventing and delaying osteoporosis has been studied. However, the causal relationship between gut bacteria, plasma proteins, circulating metabolites and osteoporosis (OP) risk has not been fully revealed. MATERIALS AND METHODS: In this study, a two-sample Mendelian randomization study (MR) approach was used to assess the causal associations between gut bacteria, plasma proteins and circulating metabolites, and osteoporosis risk using Genome Wide Association Study (GWAS) data from gut bacteria(n=8208), plasma proteins(n=2263), circulating metabolites (n=123), and osteoporosis (3203 cases and 16380452 controls). Inverse-variance weighted (IVW) was used as the main analytical method to estimate the MR causal effect and to perform directional sensitivity analysis of causality. Finally, the mediating effect values for the influence of gut flora on OP pathogenesis through circulating metabolites were calculated by univariate MR analysis, and multivariate MR analysis. Next, we evaluated the effect of Phosphatidylcholine on the osteogenic function of bone marrow mesenchymal stem cells (BMSCs) through relevant experiments, including Edu detection of cell proliferation, alkaline phosphatase (ALP) staining, Alizarin red staining to evaluate osteogenic function, qPCR and WB detection of osteogenic differentiation related gene expression. RESULTS: A total of 9 gut microbial taxa, 15 plasma proteins and eight circulating metabolites were analysed for significant causal associations with the development of OP. Significant causal effects of 7 on gut bacteria, plasma proteins and circulating metabolites were analysed by univariate MR analysis and these results were used as exposure factors for subsequent multivariate MR. Multivariate MR analyses yielded a significant effect of circulating metabolites Phosphatidylcholine and other cholines on OP (P<0.05). Further mediation effect analysis showed that the mediation effect of Bifidobacteriaceae affecting OP through the circulating metabolite Phosphatidylcholine and other cholines was -0.0224, with a 95 % confidence interval for the mediation effect that did not include 0, and the complete mediation effect was significant. Phosphatidylcholine can promote BMSCs proliferation and osteogenesis. CONCLUSION: Our study demonstrated significant causal associations of gut bacteria, plasma proteins and circulating metabolites on OP, and that Bifidobacteriaceae affect OP through the circulating metabolites Phosphatidylcholine and other cholines. Phosphatidylcholine affects the osteogenic ability of BMSCs. Further exploration of potential microbiota-associated mechanisms of bone metabolism may offer new avenues for osteoporosis prevention and treatment of osteoporosis.


Assuntos
Proteínas Sanguíneas , Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Osteoporose , Microbioma Gastrointestinal/fisiologia , Osteoporose/etiologia , Osteoporose/sangue , Humanos , Proteínas Sanguíneas/metabolismo , Estudo de Associação Genômica Ampla , Osteogênese , Fatores de Risco , Células-Tronco Mesenquimais/metabolismo
19.
Small ; : e2403371, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032159

RESUMO

The production and application of materials are evolving towards the low-dimensional micro-nano scale. Nevertheless, the fabrication of micron-scale alloy fibers remains a challenge. Herein, a novel Ni-Co-Cr-Fe-Mo high-entropy alloy (HEA) fiber with a cold-drawn reduction rate of 99.9995% and a strain (ɛ) of 12.19 is presented without requiring intermediate annealing. The exceptional deformation strain of 11.62 within the fiber leads to extraordinary tensile strengths of 2.8 GPa at room temperature and 3.6 GPa at 123 K. The in-depth investigation of the microstructure of fibers has revealed the cold drawing deformation mechanisms mediated by the synergistic effects of plane defects. Specifically, various geometrically necessary dislocation interfaces, such as dislocation walls and microbands, along with deformation twins and long-period 9R structures, form in response to external stress when ɛ≤2.7. As the strain increases, the saturated layered structure emerges and progressively evolves into a 3D equiaxed crystal. Moreover, the formation and evolution of the 9R structure (i.e., the migration of incoherent twin boundaries), coupled with the interaction of partial dislocations and the role of deformation twins, are crucial factors determining the fiber's plastic response. This work provides a novel approach to discovering new high-strength metallic fibers with excellent deformability through plane defects engineering.

20.
J Colloid Interface Sci ; 675: 526-534, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38986326

RESUMO

The promising electrocatalytic nitrate reduction reaction (eNitRR) for distributed ammonia synthesis requires the fine design of functionally compartmentalised and synergistically complementary integrated catalysts to meet the needs of low-cost and efficient ammonia synthesis. Herein, the partitionable CoP3 and Cu3P modules were built on the copper foam substrate, and the functional differentiation promoted the catalytic performance of the surface accordion-like CoP3/Cu3P@CF for eNitRR in complex water environment. Where the ammonia yield rate is as high as 23988.2 µg h-1 cm-2, and the Faradaic efficiency is close to 100 %. With CoP3/Cu3P@CF as the core, the assembled high-performance Zn-nitrate flow battery can realize the dual function of ammonia production and power supply, and can also realize the continuous production of ammonia with high selectivity driven by solar energy. The ammonia recovery reaches 753.9 mg L-1, which shows the superiority of CoP3/Cu3P@CF in multiple application scenarios and provides important experience for the vigorous development of eNitRR. Density functional theory calculation reveal that CoP3 and Cu3P sites play a relay synergistic role in eNitRR catalyzed by CoP3/Cu3P@CF. CoP3 first promotes the activation of NO3- to *NO3H, and then continuously provides proton hydrogen for the eNitRR on the surface of Cu3P, which relays the synergistic catalytic effect to promote the efficient conversion of NO3- to NH3. This study not only develops a catalyst that can promote the efficient reduction of NO3- to ammonia through an easy-to-obtain innovative strategy, but also provides an alternative strategy for the development of eNitRR that is suitable for multiple scenarios and meets the production conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...