Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Lancet Oncol ; 25(11): e581-e588, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39481414

RESUMO

The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.


Assuntos
Inteligência Artificial , Humanos , Oncologia/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Prognóstico , Resultado do Tratamento
2.
Lancet Oncol ; 25(11): e589-e601, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39481415

RESUMO

Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.


Assuntos
Inteligência Artificial , Oncologia , Humanos , Inteligência Artificial/normas , Oncologia/normas , Reprodutibilidade dos Testes , Neoplasias Encefálicas/terapia
4.
Sci Data ; 11(1): 496, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750041

RESUMO

Meningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available. Here we present the BraTS Pre-operative Meningioma Dataset, as the largest multi-institutional expert annotated multilabel meningioma multi-sequence MR image dataset to date. This dataset includes 1,141 multi-sequence MR images from six sites, each with four structural MRI sequences (T2-, T2/FLAIR-, pre-contrast T1-, and post-contrast T1-weighted) accompanied by expert manually refined segmentations of three distinct meningioma sub-compartments: enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Basic demographic data are provided including age at time of initial imaging, sex, and CNS WHO grade. The goal of releasing this dataset is to facilitate the development of automated computational methods for meningioma segmentation and expedite their incorporation into clinical practice, ultimately targeting improvement in the care of meningioma patients.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias Meníngeas , Meningioma , Meningioma/diagnóstico por imagem , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Masculino , Feminino , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Idoso
5.
Sci Data ; 11(1): 254, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424079

RESUMO

Resection and whole brain radiotherapy (WBRT) are standard treatments for brain metastases (BM) but are associated with cognitive side effects. Stereotactic radiosurgery (SRS) uses a targeted approach with less side effects than WBRT. SRS requires precise identification and delineation of BM. While artificial intelligence (AI) algorithms have been developed for this, their clinical adoption is limited due to poor model performance in the clinical setting. The limitations of algorithms are often due to the quality of datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and peritumoral edema 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging information. We used a streamlined approach to database-building through a PACS-integrated segmentation workflow.


Assuntos
Neoplasias Encefálicas , Humanos , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Irradiação Craniana/efeitos adversos , Irradiação Craniana/métodos , Imageamento por Ressonância Magnética , Radiocirurgia
6.
ArXiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37292481

RESUMO

Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.

7.
ArXiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37744461

RESUMO

Resection and whole brain radiotherapy (WBRT) are the standards of care for the treatment of patients with brain metastases (BM) but are often associated with cognitive side effects. Stereotactic radiosurgery (SRS) involves a more targeted treatment approach and has been shown to avoid the side effects associated with WBRT. However, SRS requires precise identification and delineation of BM. While many AI algorithms have been developed for this purpose, their clinical adoption has been limited due to poor model performance in the clinical setting. Major reasons for non-generalizable algorithms are the limitations in the datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models to improve generalizability. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and whole tumor (including peritumoral edema) 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging feature information. We used a streamlined approach to database-building leveraging a PACS-integrated segmentation workflow.

8.
Explor Target Antitumor Ther ; 4(4): 657-668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745691

RESUMO

Aim: The aim of this study was to investigate the feasibility of developing a deep learning (DL) algorithm for classifying brain metastases from non-small cell lung cancer (NSCLC) into epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement groups and to compare the accuracy with classification based on semantic features on imaging. Methods: Data set of 117 patients was analysed from 2014 to 2018 out of which 33 patients were EGFR positive, 43 patients were ALK positive and 41 patients were negative for either mutation. Convolutional neural network (CNN) architecture efficient net was used to study the accuracy of classification using T1 weighted (T1W) magnetic resonance imaging (MRI) sequence, T2 weighted (T2W) MRI sequence, T1W post contrast (T1post) MRI sequence, fluid attenuated inversion recovery (FLAIR) MRI sequences. The dataset was divided into 80% training and 20% testing. The associations between mutation status and semantic features, specifically sex, smoking history, EGFR mutation and ALK rearrangement status, extracranial metastasis, performance status and imaging variables of brain metastasis were analysed using descriptive analysis [chi-square test (χ2)], univariate and multivariate logistic regression analysis assuming 95% confidence interval (CI). Results: In this study of 117 patients, the analysis by semantic method showed 79.2% of the patients belonged to ALK positive were non-smokers as compared to double negative groups (P = 0.03). There was a 10-fold increase in ALK positivity as compared to EGFR positivity in ring enhancing lesions patients (P = 0.015) and there was also a 6.4-fold increase in ALK positivity as compared to double negative groups in meningeal involvement patients (P = 0.004). Using CNN Efficient Net DL model, the study achieved 76% accuracy in classifying ALK rearrangement and EGFR mutations without manual segmentation of metastatic lesions. Analysis of the manually segmented dataset resulted in improved accuracy of 89% through this model. Conclusions: Both semantic features and DL model showed comparable accuracy in classifying EGFR mutation and ALK rearrangement. Both methods can be clinically used to predict mutation status while biopsy or genetic testing is undertaken.

9.
ArXiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37608937

RESUMO

Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.

10.
Sci Rep ; 13(1): 13467, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596306

RESUMO

Skin cancer is a serious condition that requires accurate diagnosis and treatment. One way to assist clinicians in this task is using computer-aided diagnosis tools that automatically segment skin lesions from dermoscopic images. We propose a novel adversarial learning-based framework called Efficient-GAN (EGAN) that uses an unsupervised generative network to generate accurate lesion masks. It consists of a generator module with a top-down squeeze excitation-based compound scaled path, an asymmetric lateral connection-based bottom-up path, and a discriminator module that distinguishes between original and synthetic masks. A morphology-based smoothing loss is also implemented to encourage the network to create smooth semantic boundaries of lesions. The framework is evaluated on the International Skin Imaging Collaboration Lesion Dataset. It outperforms the current state-of-the-art skin lesion segmentation approaches with a Dice coefficient, Jaccard similarity, and accuracy of 90.1%, 83.6%, and 94.5%, respectively. We also design a lightweight segmentation framework called Mobile-GAN (MGAN) that achieves comparable performance as EGAN but with an order of magnitude lower number of training parameters, thus resulting in faster inference times for low compute resource settings.


Assuntos
Lesões Acidentais , Dermatopatias , Neoplasias Cutâneas , Humanos , Dermatopatias/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Diagnóstico por Computador , Aprendizagem
11.
ArXiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37396600

RESUMO

Clinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.

12.
ArXiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37396608

RESUMO

Gliomas are the most common type of primary brain tumors. Although gliomas are relatively rare, they are among the deadliest types of cancer, with a survival rate of less than 2 years after diagnosis. Gliomas are challenging to diagnose, hard to treat and inherently resistant to conventional therapy. Years of extensive research to improve diagnosis and treatment of gliomas have decreased mortality rates across the Global North, while chances of survival among individuals in low- and middle-income countries (LMICs) remain unchanged and are significantly worse in Sub-Saharan Africa (SSA) populations. Long-term survival with glioma is associated with the identification of appropriate pathological features on brain MRI and confirmation by histopathology. Since 2012, the Brain Tumor Segmentation (BraTS) Challenge have evaluated state-of-the-art machine learning methods to detect, characterize, and classify gliomas. However, it is unclear if the state-of-the-art methods can be widely implemented in SSA given the extensive use of lower-quality MRI technology, which produces poor image contrast and resolution and more importantly, the propensity for late presentation of disease at advanced stages as well as the unique characteristics of gliomas in SSA (i.e., suspected higher rates of gliomatosis cerebri). Thus, the BraTS-Africa Challenge provides a unique opportunity to include brain MRI glioma cases from SSA in global efforts through the BraTS Challenge to develop and evaluate computer-aided-diagnostic (CAD) methods for the detection and characterization of glioma in resource-limited settings, where the potential for CAD tools to transform healthcare are more likely.

14.
Nat Mach Intell ; 5(7): 799-810, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38706981

RESUMO

Medical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the performance of medical AI models on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, we introduce MedPerf, an open platform for benchmarking AI models in the medical domain. MedPerf focuses on enabling federated evaluation of AI models, by securely distributing them to different facilities, such as healthcare organizations. This process of bringing the model to the data empowers each facility to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status and real-world deployment, our roadmap and, importantly, the use of MedPerf with multiple international institutions within cloud-based technology and on-premises scenarios. Finally, we welcome new contributions by researchers and organizations to further strengthen MedPerf as an open benchmarking platform.

15.
Radiol Artif Intell ; 4(6): e220058, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36523646

RESUMO

Supplemental material is available for this article. Keywords: Informatics, MR Diffusion Tensor Imaging, MR Perfusion, MR Imaging, Neuro-Oncology, CNS, Brain/Brain Stem, Oncology, Radiogenomics, Radiology-Pathology Integration © RSNA, 2022.

16.
Nat Commun ; 13(1): 7346, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470898

RESUMO

Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.


Assuntos
Big Data , Glioblastoma , Humanos , Aprendizado de Máquina , Doenças Raras , Disseminação de Informação
17.
Phys Med Biol ; 67(20)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137534

RESUMO

Objective.De-centralized data analysis becomes an increasingly preferred option in the healthcare domain, as it alleviates the need for sharing primary patient data across collaborating institutions. This highlights the need for consistent harmonized data curation, pre-processing, and identification of regions of interest based on uniform criteria.Approach.Towards this end, this manuscript describes theFederatedTumorSegmentation (FeTS) tool, in terms of software architecture and functionality.Main results.The primary aim of the FeTS tool is to facilitate this harmonized processing and the generation of gold standard reference labels for tumor sub-compartments on brain magnetic resonance imaging, and further enable federated training of a tumor sub-compartment delineation model across numerous sites distributed across the globe, without the need to share patient data.Significance.Building upon existing open-source tools such as the Insight Toolkit and Qt, the FeTS tool is designed to enable training deep learning models targeting tumor delineation in either centralized or federated settings. The target audience of the FeTS tool is primarily the computational researcher interested in developing federated learning models, and interested in joining a global federation towards this effort. The tool is open sourced athttps://github.com/FETS-AI/Front-End.


Assuntos
Neoplasias , Software , Encéfalo , Humanos , Imageamento por Ressonância Magnética/métodos
18.
Sci Data ; 9(1): 453, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906241

RESUMO

Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Genômica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Prognóstico
19.
IEEE Trans Med Imaging ; 41(10): 2828-2847, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507621

RESUMO

Age-related macular degeneration (AMD) is the leading cause of visual impairment among elderly in the world. Early detection of AMD is of great importance, as the vision loss caused by this disease is irreversible and permanent. Color fundus photography is the most cost-effective imaging modality to screen for retinal disorders. Cutting edge deep learning based algorithms have been recently developed for automatically detecting AMD from fundus images. However, there are still lack of a comprehensive annotated dataset and standard evaluation benchmarks. To deal with this issue, we set up the Automatic Detection challenge on Age-related Macular degeneration (ADAM), which was held as a satellite event of the ISBI 2020 conference. The ADAM challenge consisted of four tasks which cover the main aspects of detecting and characterizing AMD from fundus images, including detection of AMD, detection and segmentation of optic disc, localization of fovea, and detection and segmentation of lesions. As part of the ADAM challenge, we have released a comprehensive dataset of 1200 fundus images with AMD diagnostic labels, pixel-wise segmentation masks for both optic disc and AMD-related lesions (drusen, exudates, hemorrhages and scars, among others), as well as the coordinates corresponding to the location of the macular fovea. A uniform evaluation framework has been built to make a fair comparison of different models using this dataset. During the ADAM challenge, 610 results were submitted for online evaluation, with 11 teams finally participating in the onsite challenge. This paper introduces the challenge, the dataset and the evaluation methods, as well as summarizes the participating methods and analyzes their results for each task. In particular, we observed that the ensembling strategy and the incorporation of clinical domain knowledge were the key to improve the performance of the deep learning models.


Assuntos
Degeneração Macular , Idoso , Técnicas de Diagnóstico Oftalmológico , Fundo de Olho , Humanos , Degeneração Macular/diagnóstico por imagem , Fotografação/métodos , Reprodutibilidade dos Testes
20.
Comput Biol Med ; 141: 105161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999468

RESUMO

Lung cancer is one of the deadliest types of cancers. Computed Tomography (CT) is a widely used technique to detect tumors present inside the lungs. Delineation of such tumors is particularly essential for analysis and treatment purposes. With the advancement in hardware technologies, Machine Learning and Deep Learning methods are outperforming the traditional methods in the field of medical imaging. In order to delineate lung cancer tumors, we have proposed a deep learning-based methodology which includes a maximum intensity projection based pre-processing method, two novel deep learning networks and an ensemble strategy. The two proposed networks named Deep Residual Separable Convolutional Neural Network 1 and 2 (DRS-CNN1 and DRS-CNN2) achieved better performance over the state-of-the-art U-net network and other segmentation networks. For fair comparison, we have evaluated the performances of all networks on Medical Segmentation Decathlon (MSD) and StructSeg 2019 datasets. The DRS-CNN2 achieved a mean Dice Similarity Coefficient (DSC) of 0.649, mean 95 Hausdorff Distance (HD95) of 18.26, mean Sensitivity 0.737 and a mean Precision of 0.765 on independent test sets.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...