Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Med Genomics ; 15(Suppl 2): 116, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590321

RESUMO

BACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative disorders characterized by progressive decline in cognitive function. Targeted genetic analyses, genome-wide association studies, and imaging genetic analyses have been performed to detect AD risk and protective genes and have successfully identified dozens of AD susceptibility loci. Recently, brain imaging transcriptomics analyses have also been conducted to investigate the relationship between neuroimaging traits and gene expression measures to identify interesting gene-traits associations. These imaging transcriptomic studies typically do not involve the disease outcome in the analysis, and thus the identified brain or transcriptomic markers may not be related or specific to the disease outcome. RESULTS: We propose an innovative two-stage approach to identify genes whose expression profiles are related to diagnosis phenotype via brain transcriptome mapping. Specifically, we first map the effects of a diagnosis phenotype onto imaging traits across the brain using a linear regression model. Then, the gene-diagnosis association is assessed by spatially correlating the brain transcriptome map with the diagnostic effect map on the brain-wide imaging traits. To demonstrate the promise of our approach, we apply it to the integrative analysis of the brain transcriptome data from the Allen Human Brain Atlas (AHBA) and the amyloid imaging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our method identifies 12 genes whose brain-wide transcriptome patterns are highly correlated with six different diagnostic effect maps on the amyloid imaging traits. These 12 genes include four confirmatory findings (i.e., AD genes reported in DisGeNET) and eight novel genes that have not be associated with AD in DisGeNET. CONCLUSION: We have proposed a novel disease-related brain transcriptomic mapping method to identify genes whose expression profiles spatially correlated with regional diagnostic effects on a studied brain trait. Our empirical study on the AHBA and ADNI data shows the promise of the approach, and the resulting AD gene discoveries provide valuable information for better understanding biological pathways from transcriptomic signatures to intermediate brain traits and to phenotypic disease outcomes.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Encéfalo/diagnóstico por imagem , Estudo de Associação Genômica Ampla , Humanos , Transcriptoma
2.
Med Image Anal ; 71: 102026, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848962

RESUMO

The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models.


Assuntos
Conectoma , Rede Nervosa , Encéfalo/diagnóstico por imagem , Cognição , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...