Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 4(7): e6137, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19593434

RESUMO

BACKGROUND: LmrA is a multidrug ATP-binding cassette (ABC) transporter from Lactococcus lactis with no known physiological substrate, which can transport a wide range of chemotherapeutic agents and toxins from the cell. The protein can functionally replace the human homologue ABCB1 (also termed multidrug resistance P-glycoprotein MDR1) in lung fibroblast cells. Even though LmrA mediates ATP-dependent transport, it can use the proton-motive force to transport substrates, such as ethidium bromide, across the membrane by a reversible, H(+)-dependent, secondary-active transport reaction. The mechanism and physiological context of this reaction are not known. METHODOLOGY/PRINCIPAL FINDINGS: We examined ion transport by LmrA in electrophysiological experiments and in transport studies using radioactive ions and fluorescent ion-selective probes. Here we show that LmrA itself can transport NaCl by a similar secondary-active mechanism as observed for ethidium bromide, by mediating apparent H(+)-Na(+)-Cl(-) symport. Remarkably, LmrA activity significantly enhances survival of high-salt adapted lactococcal cells during ionic downshift. CONCLUSIONS/SIGNIFICANCE: The observations on H(+)-Na(+)-Cl(-) co-transport substantiate earlier suggestions of H(+)-coupled transport by LmrA, and indicate a novel link between the activity of LmrA and salt stress. Our findings demonstrate the relevance of investigations into the bioenergetics of substrate translocation by ABC transporters for our understanding of fundamental mechanisms in this superfamily. This study represents the first use of electrophysiological techniques to analyze substrate transport by a purified multidrug transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Cloreto de Sódio/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Sequência de Bases , Primers do DNA , Transporte de Íons , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutagênese Sítio-Dirigida , Prótons , Espectrometria de Massas por Ionização por Electrospray
2.
Biochem Pharmacol ; 75(4): 866-74, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18061142

RESUMO

LmrA is an ATP-binding cassette (ABC) multidrug transporter from Lactococcus lactis, and is a structural homologue of the human multidrug resistance P-glycoprotein (ABCB1), the overexpression of which is associated with multidrug resistance in tumours. We recently observed that a truncated version of LmrA lacking the nucleotide-binding domain mediates a proton motive force-dependent ethidium transport reaction by catalyzing proton-ethidium symport. This finding raised the question whether proton motive force-dependent transport can also be observed for other drugs, and whether this reaction is also relevant for full-length LmrA. Furthermore, the observations on LmrA-MD raised the question whether ATP-dependent transport by LmrA in intact cells could be due to the activity of independent ABC transporters that might become upregulated in the lactococcal cells due to the overexpression of LmrA; the recently identified ABC multidrug transporter LmrCD was put forward as a possible candidate. Here, we investigated the energy coupling to the transport of the amphiphilic dye Hoechst 33342 in proteoliposomes containing purified LmrA. For this purpose, LmrA was obtained from lactococcal cells lacking the genomic lmrA and lmrCD genes, in which LmrA was expressed from a plasmid. To separate ATP-dependence from proton motive force-dependence, we also used mutant LmrA proteins, which were affected in their ability to hydrolyse ATP. Our studies in proteoliposomes demonstrate that LmrA can catalyze Hoechst 33342 transport independent of auxiliary proteins, in an ATP-dependent fashion and a transmembrane chemical proton gradient (interior acidic)-dependent fashion.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Resistência a Múltiplos Medicamentos , Lactococcus lactis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Força Próton-Motriz/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Benzimidazóis/metabolismo , Transporte Biológico , Membrana Celular , Clonagem Molecular , Escherichia coli/genética , Corantes Fluorescentes/metabolismo , Deleção de Genes , Lactococcus lactis/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmídeos , Proteolipídeos/metabolismo
3.
Eur J Cancer ; 42(4): 434-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16460927

RESUMO

Having your work published in a good journal is the life-blood of research. Publications are the key element in scientific communication and influence future funding and cancer development for the authors. Every year more and more manuscripts are submitted and competition for acceptance is fierce. The editors of EJC recently held a workshop to discuss ways to improve manuscript writing, and this paper summarises their recommendations. Choose a title carefully, keep the introduction short, avoid confusing methods with results, and use figures wherever possible. Discuss only the relevance of new findings to published literature. Above all read the specific "instructions to authors" -- it is surprising how often this is ignored -- at peril!


Assuntos
Políticas Editoriais , Publicações Periódicas como Assunto , Editoração , Redação , Congressos como Assunto , Europa (Continente)
4.
J Bacteriol ; 187(18): 6363-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16159769

RESUMO

MsbA is an essential ATP-binding cassette half-transporter in the cytoplasmic membrane of the gram-negative Escherichia coli and is required for the export of lipopolysaccharides (LPS) to the outer membrane, most likely by transporting the lipid A core moiety. Consistent with the homology of MsbA to the multidrug transporter LmrA in the gram-positive Lactococcus lactis, our recent work in E. coli suggested that MsbA might interact with multiple drugs. To enable a more detailed analysis of multidrug transport by MsbA in an environment deficient in LPS, we functionally expressed MsbA in L. lactis. MsbA expression conferred an 86-fold increase in resistance to the macrolide erythromycin. A kinetic characterization of MsbA-mediated ethidium and Hoechst 33342 transport revealed apparent single-site kinetics and competitive inhibition of these transport reactions by vinblastine with K(i) values of 16 and 11 microM, respectively. We also detected a simple noncompetitive inhibition of Hoechst 33342 transport by free lipid A with a K(i) of 57 microM, in a similar range as the K(i) for vinblastine, underscoring the relevance of our LPS-less lactococcal model for studies on MsbA-mediated drug transport. These observations demonstrate the ability of heterologously expressed MsbA to interact with free lipid A and multiple drugs in the absence of auxiliary E. coli proteins. Our transport data provide further functional support for direct LPS-MsbA interactions as observed in a recent crystal structure for MsbA from Salmonella enterica serovar Typhimurium (C. L. Reyes and G. Chang, Science 308:1028-1031, 2005).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Lipídeo A/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Preparações Farmacêuticas/metabolismo , Transporte Biológico , Escherichia coli/enzimologia , Lactococcus lactis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
5.
FASEB J ; 19(12): 1698-700, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16040836

RESUMO

The ATP binding cassette (ABC) transporter LmrA from the bacterium Lactococcus lactis is a homolog of the human multidrug resistance P-glycoprotein (ABCB1), the activity of which impairs the efficacy of chemotherapy. In a previous study, LmrA was shown to mediate ethidium efflux by an ATP-dependent proton-ethidium symport reaction in which the carboxylate E314 is critical. The functional importance of this key residue for ABC proteins was suggested by its conservation in a wider family of related transporters; however, the structural basis of its role was not apparent. Here, we have used homology modeling to define the structural environment of E314. The residue is nested in a hydrophobic environment that probably elevates its pKa, accounting for the pH dependency of drug efflux that we report in this work. Functional analyses of wild-type and mutant proteins in cells and proteoliposomes support our proposal for the mechanistic role of E314 in proton-coupled ethidium transport. As the carboxylate is known to participate in proton translocation by secondary-active transporters, our observations suggest that this substituent can play a similar role in the activity of ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Ácidos Carboxílicos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Bases de Dados de Proteínas , Resistência Microbiana a Medicamentos , Etídio/química , Concentração de Íons de Hidrogênio , Cinética , Lactococcus lactis/metabolismo , Potenciais da Membrana , Proteínas de Membrana Transportadoras/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Plasmídeos/metabolismo , Prótons , Homologia de Sequência de Aminoácidos , Fatores de Tempo
6.
Biochem J ; 385(Pt 2): 419-26, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15362954

RESUMO

The human BCRP (breast cancer resistance protein, also known as ABCG2) is an ABC (ATP-binding cassette) transporter that extrudes various anticancer drugs from cells, causing multidrug resistance. To study the molecular determinants of drug specificity of BCRP in more detail, we have expressed wild-type BCRP (BCRP-R) and the drug-selected cancer cell line-associated R482G (Arg482-->Gly) mutant BCRP (BCRP-G) in Lactococcus lactis. Drug resistance and the rate of drug efflux in BCRP-expressing cells were proportional to the expression level of the protein and affected by the R482G mutation, pointing to a direct role of BCRP in drug transport in L. lactis. In agreement with observations in mammalian cells, the BCRP-R-mediated transport of the cationic substrates rhodamine 123 and tetramethylrosamine was significantly decreased compared with the activity of BCRP-G. In addition, BCRP-R showed an enhanced interaction with the anionic anticancer drug methotrexate when compared with BCRP-G, suggesting that structure/substrate specificity relationships in BCRP, as observed in eukaryotic expression systems, are maintained in prokaryotic L. lactis. Interestingly, BCRP-R exhibited a previously unestablished ability to transport antibiotics, unconjugated sterols and primary bile acids in L. lactis, for which the R482G mutation was not critical. Since Arg482 is predicted to be present in the intracellular domain of BCRP, close to transmembrane segment 3, our results point to a role of this residue in electrostatic interactions with charged substrates including rhodamine 123 and methotrexate. Since unconjugated sterols are neutral molecules and bile acids and many antibiotics are engaged in protonation/deprotonation equilibria at physiological pH, our observations may point either to a lack of interaction between Arg482 and neutral or neutralized moieties in these substrates during transport or to the interaction of these substrates with regions in BCRP not including Arg482.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/metabolismo , Arginina/fisiologia , Ácidos e Sais Biliares/metabolismo , Transporte Biológico/fisiologia , Proteínas de Neoplasias/metabolismo , Esteróis/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Substituição de Aminoácidos , Arginina/genética , Neoplasias da Mama/metabolismo , Estradiol/metabolismo , Regulação da Expressão Gênica/genética , Glicina/genética , Glicina/fisiologia , Humanos , Lactococcus lactis/genética , Metotrexato/metabolismo , Mutação de Sentido Incorreto/genética , Mutação de Sentido Incorreto/fisiologia , Proteínas de Neoplasias/genética , Rodamina 123/metabolismo
7.
J Biol Chem ; 279(12): 11273-80, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-14660649

RESUMO

The ATP dependence of ATP-binding cassette (ABC) transporters has led to the widespread acceptance that these systems are unidirectional. Interestingly, in the presence of an inwardly directed ethidium concentration gradient in ATP-depleted cells of Lactococcus lactis, the ABC multidrug transporter LmrA mediated the reverse transport (or uptake) of ethidium with an apparent K(t) of 2.0 microm. This uptake reaction was competitively inhibited by the LmrA substrate vinblastine and was significantly reduced by an E314A substitution in the membrane domain of the transporter. Similar to efflux, LmrA-mediated ethidium uptake was inhibited by the E512Q replacement in the Walker B region of the nucleotide-binding domain of the protein, which strongly reduced its drug-stimulated ATPase activity, consistent with published observations for other ABC transporters. The notion that ethidium uptake is coupled to the catalytic cycle in LmrA was further corroborated by studies in LmrA-containing cells and proteoliposomes in which reverse transport of ethidium was associated with the net synthesis of ATP. Taken together, these data demonstrate that the conformational changes required for drug transport by LmrA are (i) not too far from equilibrium under ATP-depleted conditions to be reversed by appropriate changes in ligand concentrations and (ii) not necessarily coupled to ATP hydrolysis, but associated with a reversible catalytic cycle. These findings and their thermodynamic implications shed new light on the mechanism of energy coupling in ABC transporters and have implications for the development of new modulators that could enable reverse transport-associated drug delivery in cells through their ability to uncouple ATP binding/hydrolysis from multidrug efflux.


Assuntos
Trifosfato de Adenosina/biossíntese , Proteínas de Bactérias/metabolismo , Etídio/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Catálise , Primers do DNA , Cinética , Lactococcus lactis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutagênese Sítio-Dirigida , Transporte Proteico
8.
Nature ; 426(6968): 866-70, 2003 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-14685244

RESUMO

Multidrug resistance, by which cells become resistant to multiple unrelated pharmaceuticals, is due to the extrusion of drugs from the cell's interior by active transporters such as the human multidrug resistance P-glycoprotein. Two major classes of transporters mediate this extrusion. Primary-active transporters are dependent on ATP hydrolysis, whereas secondary-active transporters are driven by electrochemical ion gradients that exist across the plasma membrane. The ATP-binding cassette (ABC) transporter LmrA is a primary drug transporter in Lactococcus lactis that can functionally substitute for P-glycoprotein in lung fibroblast cells. Here we have engineered a truncated LmrA protein that lacks the ATP-binding domain. Surprisingly, this truncated protein mediates a proton-ethidium symport reaction without the requirement for ATP. In other words, it functions as a secondary-active multidrug uptake system. These findings suggest that the evolutionary precursor of LmrA was a secondary-active substrate translocator that acquired an ATP-binding domain to enable primary-active multidrug efflux in L. lactis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lactococcus lactis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Transporte Biológico Ativo , Resistência a Múltiplos Medicamentos , Etídio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactococcus lactis/genética , Potenciais da Membrana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Estrutura Terciária de Proteína , Força Próton-Motriz , Prótons , Deleção de Sequência/genética
9.
Int J Antimicrob Agents ; 22(3): 200-4, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-13678821

RESUMO

The crystallization of MsbA, an ATP-binding cassette (ABC) transporter involved in the transport of Lipid A in Escherichia coli, provided a fascinating glimpse into the high-resolution structure of an ABC transporter at 4.8 A. The E. coli crystal structure of MsbA reveals a dimer. Although the structure of the MsbA monomer is consistent with the biochemistry of ABC transporters, including the human multidrug resistance P-glycoprotein, the interface between the monomers in the MsbA dimer may not reflect the biologically relevant interface. We considered the interface in a two-armed MsbA dimer, named spiral. Our findings indicate that (i) the spiral MsbA dimer may have biological relevance for ABC transporters that interact with lipophilic substrates, and (ii) the dimer interface observed in the crystal structure of E. coli MsbA represents a crystallization artefact. A comparison of the spiral MsbA dimer with the recently published structure of MsbA in Vibrio cholera is also described.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Cristalização , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Lipídeo A/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
10.
J Biol Chem ; 278(37): 35193-8, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12842882

RESUMO

LmrA is an ATP binding cassette (ABC) multidrug transporter in Lactococcus lactis that is a structural and functional homologue of the human multidrug resistance P-glycoprotein MDR1 (ABCB1). LmrA is also homologous to MsbA, an essential ABC transporter in Escherichia coli involved in the trafficking of lipids, including Lipid A. We have compared the substrate specificities of LmrA and MsbA in detail. Surprisingly, LmrA was able to functionally substitute for a temperature-sensitive mutant MsbA in E. coli WD2 at non-permissive temperatures, suggesting that LmrA could transport Lipid A. LmrA also exhibited a Lipid A-stimulated, vanadate-sensitive ATPase activity. Reciprocally, the expression of MsbA conferred multidrug resistance on E. coli. Similar to LmrA, MsbA interacted with photoactivatable substrate [3H]azidopine, displayed a daunomycin, vinblastine, and Hoechst 33342-stimulated vanadate-sensitive ATPase activity, and mediated the transport of ethidium from cells and Hoechst 33342 in proteoliposomes containing purified and functionally reconstituted protein. Taken together, these data demonstrate that MsbA and LmrA have overlapping substrate specificities. Our observations imply the presence of structural elements in the recently published crystal structures of MsbA in E. coli and Vibrio cholera (Chang, G., and Roth, C. B. (2001) Science 293, 1793-1800; Chang, G. (2003) J. Mol. Biol. 330, 419-430) that support drug-protein interactions and suggest a possible role for LmrA in lipid trafficking in L. lactis.


Assuntos
Proteínas de Bactérias/metabolismo , Lactococcus lactis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Transporte Biológico , Resistência a Múltiplos Medicamentos , Etídio/farmacocinética , Humanos , Cinética , Lactococcus lactis/crescimento & desenvolvimento , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/isolamento & purificação
11.
J Biol Chem ; 278(23): 20645-51, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12668685

RESUMO

The human breast cancer resistance protein (BCRP, also know as ABCG2, MXR, or ABCP) is one of the more recently discovered ATP-binding cassette (ABC) transporters that confer resistance on cancer cells by mediating multidrug efflux. In the present study, we have obtained functional expression of human BCRP in the Gram-positive bacterium Lactococcus lactis. BCRP expression conferred multidrug resistance on the lactococcal cells, which was based on ATP-dependent drug extrusion. BCRP-mediated ATPase and drug transport activities were inhibited by the BCRP-specific modulator fumitremorgin C. To our knowledge these data represent the first example of the functional expression of a mammalian ABC half-transporter in bacteria. Although members of the ABCG subfamily (such as ABCG1 and ABCG5/8) have been implicated in the transport of sterols, such a role has not yet been established for BCRP. Interestingly, the BCRP-associated ATPase activity in L. lactis was significantly stimulated by (i) sterols including cholesterol and estradiol, (ii) natural steroids such as progesterone and testosterone, and (iii) the anti-estrogen anticancer drug tamoxifen. In addition, BCRP mediated the efflux of [3H]estradiol from lactococcal cells. Our findings suggest that BCRP may play a role in the transport of sterols in human, in addition to its ability to transport multiple drugs and toxins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias , Esteróis/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos Hormonais/farmacocinética , Colesterol/farmacocinética , Estradiol/farmacocinética , Expressão Gênica , Humanos , Lactococcus lactis/genética , Progesterona/farmacocinética , Tamoxifeno/farmacocinética , Testosterona/farmacocinética , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...