Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 13(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738657

RESUMO

Trait polymorphisms are widespread in nature, and explaining their stable co-existence is a central problem in ecology and evolution. Alternative reproductive tactics, in which individuals of one or more sex exhibit discrete, discontinuous traits in response to reproductive competition, represent a special case of trait polymorphism in which the traits are often complex, behavioural, and dynamic. Thus, studying how alternative reproductive tactics are maintained may provide general insights into how complex trait polymorphisms are maintained in populations. We construct a spatially explicit individual-based model inspired from extensively collected empirical data to address the mechanisms behind the co-existence of three behavioural alternative reproductive tactics in males of a tree cricket (Oecanthus henryi). Our results show that the co-existence of these tactics over ecological time scales is facilitated by the spatial structure of the landscape they inhabit, which serves to equalise the otherwise unequal mating benefits of the three tactics. We also show that this co-existence is unlikely if spatial aspects of the system are not considered. Our findings highlight the importance of spatial dynamics in understanding ecological and evolutionary processes and underscore the power of integrative approaches that combine models with empirical data.


Assuntos
Gryllidae , Reprodução , Comportamento Sexual Animal , Masculino , Gryllidae/fisiologia , Gryllidae/genética , Animais , Evolução Biológica , Fenótipo
3.
Biol Lett ; 19(5): 20230110, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37194255

RESUMO

Duetting is a behaviour observed in some animal species, in which both males and females participate in signalling to find mates. It may have evolved as an adaptation to reduce the costs associated with mate-finding behaviours, such as predation risk. Duetting systems allow estimation of sex-specific predation risks of signalling and searching in the same species, giving insights into the selective forces acting on these behaviours. Using an acoustic-vibratory duetting katydid, Onomarchus uninotatus, and its bat predator, Megaderma spasma, we estimated the sex-specific predation costs of different mate-finding behaviours, such as walking, flying and signalling, by conducting experiments with untethered live katydids and bats. We found that acoustic-vibratory duetting benefits both the sexes as a low-risk mate-finding strategy.


Assuntos
Quirópteros , Comportamento Predatório , Animais , Feminino , Masculino , Comportamento Sexual Animal , Reprodução
4.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258611

RESUMO

Field crickets (Family Gryllidae, Subfamily Gryllinae) typically produce tonal calls with carrier frequencies in the range 3-8 kHz. In this study, we explored the use of a finite element model (FEM) of the stridulatory apparatus of a field cricket, Gryllus bimaculatus, based on experimental measurements of resonator geometry and mechanical properties, to predict the measured call carrier frequencies of eight other field cricket species, ranging between 3 and 7 kHz. The model allowed accurate predictions of carrier frequencies for all eight species to within a few hundred hertz from morphological measurements of their resonators. We then used the model to explore the plausible evolutionary design space for field cricket call carrier frequency along the axes of resonator size and thickness, and mapped the locations of the nine experimentally measured species in this design space. Although the nine species spanned the evolutionarily conserved spectrum of carrier frequency and body size in field crickets, they were clustered in a small region of the available design space. We then explored the reasons for this apparent evolutionary constraint on field cricket carrier frequencies at both the lower and higher limit. We found that body size and sound radiation efficiency were the main constraints at the lower limits, whereas the energetics of stridulation using the clockwork mechanism may pose a constraint at higher frequencies.


Assuntos
Gryllidae , Acústica , Animais , Gryllidae/anatomia & histologia , Asas de Animais/anatomia & histologia
5.
J Exp Biol ; 224(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34047777

RESUMO

Prey that are signalling in aggregation become more conspicuous with increasing numbers and tend to attract more predators. Such grouping may, however, benefit prey by lowering the risk of being captured because of the predator's difficulty in targeting individuals. Previous studies have investigated anti-predatory benefits of prey aggregation using visual predators, but it is unclear whether such benefits are gained in an auditory context. We investigated whether katydids of the genus Mecopoda gain protection from their acoustically eavesdropping bat predator Megaderma spasma when calling in aggregation. In a choice experiment, bats approached calls of prey aggregations more often than those of prey calling alone, indicating that prey calling in aggregation are at higher risk. In prey capture tasks, however, the average time taken and the number of flight passes made by bats before capturing a katydid were significantly higher for prey calling in aggregation than when calling alone, indicating that prey face lower predation risk when calling in aggregation. Another common anti-predatory strategy, calling from within vegetation, increased the time taken by bats to capture katydids calling alone but did not increase the time taken to capture prey calling from aggregations. The increased time taken to capture prey calling in aggregation compared with solitary calling prey offers an escape opportunity, thus providing prey that signal acoustically in aggregations with anti-predatory benefits. For bats, greater detectability of calling prey aggregations is offset by lower foraging efficiency, and this trade-off may shape predator foraging strategies in natural environments.


Assuntos
Quirópteros , Ortópteros , Animais , Humanos , Comportamento Predatório
6.
J Exp Biol ; 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785502

RESUMO

The ability to entrain to auditory stimuli has been a powerful method to investigate the comparative rhythm abilities of different animals. While synchrony to regular simple rhythms is well documented, synchrony to complex stimuli, with multiple components at unequal time intervals, is rarer. Several katydid species with simple calls have been shown to achieve synchrony as part of their natural calling interactions in multi-individual choruses. Yet no study so far has demonstrated synchrony in any insect with a complex call. Using natural calling behaviour and playback experiments, we investigated acoustic synchrony and the mechanisms underlying it in the katydid species Mecopoda 'Two Part Caller'. This species has a complex call consisting of a long trill followed by two or more chirps. We found that individual males synchronized trills and, to a lesser extent, chirps. Further investigation of trill synchrony showed that the timing of trills is modified by external trills but not chirps. Chirp synchrony is modified by external chirps, but also by trills. We suggest a qualitative two-oscillator model underlying synchrony in this species and discuss the implications for the evolution of acoustic synchrony.

7.
Proc Biol Sci ; 287(1941): 20202229, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33323074

RESUMO

Intense sexual selection in the form of mate choice can facilitate the evolution of different alternative reproductive strategies, which can be condition-dependent. Tree cricket males produce long-distance acoustic signals which are used by conspecific females for mate localization and mate choice. Our study shows that baffling, an acoustic call amplification strategy employed by male tree crickets using self-made tools, is a classic example of a condition-dependent alternative strategy. We show that though most males can baffle, less preferred males, such as smaller and lower-amplitude callers, predominantly use this alternative strategy. Baffling allows these males to increase their call amplitude and advertisement range, which attracts a higher number of females. Baffling also gives these males a mating benefit because females mate for longer durations with them. Our results suggest that the advantage of baffling in terms of gain in the number of sperm cells transferred while mating is primarily limited to less preferred males, thus maintaining the polymorphism of calling strategies in the population. We summarize that baffling is a condition-dependent strategy used by less preferred tree cricket males to obtain mating benefits.


Assuntos
Gryllidae/fisiologia , Comportamento Sexual Animal/fisiologia , Acústica , Animais , Feminino , Masculino , Preferência de Acasalamento Animal/fisiologia , Árvores
8.
Elife ; 62017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29227246

RESUMO

Object manufacture in insects is typically inherited, and believed to be highly stereotyped. Optimization, the ability to select the functionally best material and modify it appropriately for a specific function, implies flexibility and is usually thought to be incompatible with inherited behaviour. Here, we show that tree-crickets optimize acoustic baffles, objects that are used to increase the effective loudness of mate-attraction calls. We quantified the acoustic efficiency of all baffles within the naturally feasible design space using finite-element modelling and found that design affects efficiency significantly. We tested the baffle-making behaviour of tree crickets in a series of experimental contexts. We found that given the opportunity, tree crickets optimised baffle acoustics; they selected the best sized object and modified it appropriately to make a near optimal baffle. Surprisingly, optimization could be achieved in a single attempt, and is likely to be achieved through an inherited yet highly accurate behavioural heuristic.


Assuntos
Acústica , Gryllidae/fisiologia , Comportamento Sexual Animal , Animais , Árvores/parasitologia
9.
PLoS One ; 12(11): e0188843, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182676

RESUMO

Sympatric divergent populations of the same species provide an opportunity to study the evolution and maintenance of reproductive isolation. Male mating calls are important in sexual selection in acoustically communicating species, and they also have the potential to maintain isolation among species or incipient species. We studied divergent south Indian populations of the bush cricket Mecopoda elongata which are extremely difficult to distinguish morphologically, but which exhibit striking divergence in male acoustic signals. We performed phonotactic experiments investigating the relative preference of females of the "Chirper" song type for calls of all 5 of the song types found in the region (in varying degrees of sympatry). We found that Chirper females preferred their own song type and were completely unresponsive to three trilling song types. Chirper females were occasionally attracted to the call type "Double Chirper" (the call most similar to their own type), suggesting call preference alone cannot provide a complete isolating mechanism. To investigate the basis of call preference we investigated the response of chirper females to variation in chirp rate. Chirper females responded most frequently to a mean chirp rate characteristic of their own song type rather than a higher chirp rate which would be more characteristic of the Double-Chirper song type. This suggests females drive stabilising selection on male chirp rate, which may contribute to the maintenance of isolation. Finally, a no-choice mating experiment using Chirper females and Chirper and Double Chirper males revealed a significant preference of Chirper females to mate with their own song type, even without a requirement for phonotaxis. Overall, the strong specificity of Chirper females for their 'own' song type provides evidence for behavioural isolation among divergent sympatric Mecopoda song types being maintained by female preference for both male song type and subsequent mating probability driven by other cues.


Assuntos
Acústica , Gryllidae/fisiologia , Isolamento Reprodutivo , Comportamento Sexual Animal , Vocalização Animal , Animais , Feminino , Masculino
10.
J Exp Biol ; 220(Pt 7): 1222-1232, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096428

RESUMO

In acoustically communicating animals, reproductive isolation between sympatric species is usually maintained through species-specific calls. This requires that the receiver be tuned to the conspecific signal. Mapping the response space of the receiver onto the signal space of the conspecific investigates this tuning. A combinatorial approach to investigating the response space is more informative as the influence on the receiver of the interactions between the features is also elucidated. However, most studies have examined individual preference functions rather than the multivariate response space. We studied the maintenance of reproductive isolation between two sympatric tree cricket species (Oecanthus henryi and Oecanthus indicus) through the temporal features of the calls. Individual response functions were determined experimentally for O. henryi, the results from which were combined in a statistical framework to generate a multivariate quantitative receiver response space. The predicted response was higher for the signals of the conspecific than for signals of the sympatric heterospecific, indicating maintenance of reproductive isolation through songs. The model allows prediction of response to untested combinations of temporal features as well as delineation of the evolutionary constraints on the signal space. The model can also be used to predict the response of O. henryi to other heterospecific signals, making it a useful tool for the study of the evolution and maintenance of reproductive isolation via long-range acoustic signals.


Assuntos
Gryllidae/fisiologia , Isolamento Reprodutivo , Simpatria , Vocalização Animal , Estimulação Acústica , Animais , Simulação por Computador , Feminino , Masculino , Modelos Biológicos , Especificidade da Espécie
11.
PLoS One ; 11(11): e0165807, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27820868

RESUMO

Amount of calling activity (calling effort) is a strong determinant of male mating success in species such as orthopterans and anurans that use acoustic communication in the context of mating behaviour. While many studies in crickets have investigated the determinants of calling effort, patterns of variability in male calling effort in natural choruses remain largely unexplored. Within-individual variability in calling activity across multiple nights of calling can influence female mate search and mate choice strategies. Moreover, calling site fidelity across multiple nights of calling can also affect the female mate sampling strategy. We therefore investigated the spatio-temporal dynamics of acoustic signaling behaviour in a wild population of the field cricket species Plebeiogryllus guttiventris. We first studied the consistency of calling activity by quantifying variation in male calling effort across multiple nights of calling using repeatability analysis. Callers were inconsistent in their calling effort across nights and did not optimize nightly calling effort to increase their total number of nights spent calling. We also estimated calling site fidelity of males across multiple nights by quantifying movement of callers. Callers frequently changed their calling sites across calling nights with substantial displacement but without any significant directionality. Finally, we investigated trade-offs between within-night calling effort and energetically expensive calling song features such as call intensity and chirp rate. Calling effort was not correlated with any of the calling song features, suggesting that energetically expensive song features do not constrain male calling effort. The two key features of signaling behaviour, calling effort and call intensity, which determine the duration and spatial coverage of the sexual signal, are therefore uncorrelated and function independently.


Assuntos
Gryllidae , Preferência de Acasalamento Animal , Análise Espaço-Temporal , Vocalização Animal , Animais , Feminino , Masculino , Movimento
12.
J Exp Biol ; 218(Pt 19): 3042-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254322

RESUMO

The communication strategy of most crickets and bushcrickets typically consists of males broadcasting loud acoustic calling songs, while females perform phonotaxis, moving towards the source of the call. Males of the pseudophylline bushcricket species Onomarchus uninotatus produce an unusually low-pitched call, and we found that the immediate and most robust response of females to the male acoustic call was a bodily vibration, or tremulation, following each syllable of the call. We hypothesized that these bodily oscillations might send out a vibrational signal along the substrate on which the female stands, which males could use to localize her position. We quantified these vibrational signals using a laser vibrometer and found a clear phase relationship of alternation between the chirps of the male acoustic call and the female vibrational response. This system therefore constitutes a novel multimodal duet with a reliable temporal structure. We also found that males could localize the source of vibration but only if both the acoustic and vibratory components of the duet were played back. This unique multimodal duetting system may have evolved in response to higher levels of bat predation on searching bushcricket females than calling males, shifting part of the risk associated with partner localization onto the male. This is the first known example of bushcricket female tremulation in response to a long-range male acoustic signal and the first known example of a multimodal duet among animals.


Assuntos
Gryllidae/fisiologia , Comunicação Animal , Animais , Comportamento Apetitivo , Feminino , Masculino , Comportamento Sexual Animal , Vibração
13.
Proc Biol Sci ; 282(1798): 20142319, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25429019

RESUMO

Males that produce conspicuous mate attraction signals are often at high risk of predation from eavesdropping predators. Females of such species typically search for signalling males and their higher motility may also place them at risk. The relative predation risk faced by males and females in the context of mate-finding using long-distance signals has rarely been investigated. In this study, we show, using a combination of diet analysis and behavioural experiments, that katydid females, who do not produce acoustic signals, are at higher risk of predation from a major bat predator, Megaderma spasma, than calling males. Female katydids were represented in much higher numbers than males in the culled remains beneath roosts of M. spasma. Playback experiments using katydid calls revealed that male calls were approached in only about one-third of the trials overall, whereas tethered, flying katydids were always approached and attacked. Our results question the idea that necessary costs of mate-finding, including risk of predation, are higher in signalling males than in searching females.


Assuntos
Comunicação Animal , Quirópteros/fisiologia , Cadeia Alimentar , Ortópteros/fisiologia , Comportamento Predatório , Animais , Feminino , Masculino , Risco , Caracteres Sexuais , Comportamento Sexual Animal
14.
Artigo em Inglês | MEDLINE | ID: mdl-25352362

RESUMO

The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.


Assuntos
Acústica , Comunicação Animal , Ecologia , Audição/fisiologia , Insetos/fisiologia , Animais
15.
PLoS One ; 9(3): e89540, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603717

RESUMO

Objective identification and description of mimicked calls is a primary component of any study on avian vocal mimicry but few studies have adopted a quantitative approach. We used spectral feature representations commonly used in human speech analysis in combination with various distance metrics to distinguish between mimicked and non-mimicked calls of the greater racket-tailed drongo, Dicrurus paradiseus and cross-validated the results with human assessment of spectral similarity. We found that the automated method and human subjects performed similarly in terms of the overall number of correct matches of mimicked calls to putative model calls. However, the two methods also misclassified different subsets of calls and we achieved a maximum accuracy of ninety five per cent only when we combined the results of both the methods. This study is the first to use Mel-frequency Cepstral Coefficients and Relative Spectral Amplitude - filtered Linear Predictive Coding coefficients to quantify vocal mimicry. Our findings also suggest that in spite of several advances in automated methods of song analysis, corresponding cross-validation by humans remains essential.


Assuntos
Percepção Auditiva/fisiologia , Comportamento Imitativo/fisiologia , Passeriformes/fisiologia , Vocalização Animal/fisiologia , Algoritmos , Animais , Humanos , Processamento de Sinais Assistido por Computador , Espectrografia do Som/métodos , Especificidade da Espécie
16.
PLoS One ; 8(9): e75930, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086666

RESUMO

Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.


Assuntos
Classificação/métodos , Análise por Conglomerados , Análise Discriminante , Gryllidae/classificação , Gryllidae/fisiologia , Vocalização Animal/fisiologia , Animais , Gryllidae/genética , Índia , Masculino , Espectrografia do Som , Especificidade da Espécie
17.
J Exp Biol ; 216(Pt 5): 777-87, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23125342

RESUMO

Low-frequency sounds are advantageous for long-range acoustic signal transmission, but for small animals they constitute a challenge for signal detection and localization. The efficient detection of sound in insects is enhanced by mechanical resonance either in the tracheal or tympanal system before subsequent neuronal amplification. Making small structures resonant at low sound frequencies poses challenges for insects and has not been adequately studied. Similarly, detecting the direction of long-wavelength sound using interaural signal amplitude and/or phase differences is difficult for small animals. Pseudophylline bushcrickets predominantly call at high, often ultrasonic frequencies, but a few paleotropical species use lower frequencies. We investigated the mechanical frequency tuning of the tympana of one such species, Onomarchus uninotatus, a large bushcricket that produces a narrow bandwidth call at an unusually low carrier frequency of 3.2 kHz. Onomarchus uninotatus, like most bushcrickets, has two large tympanal membranes on each fore-tibia. We found that both these membranes vibrate like hinged flaps anchored at the dorsal wall and do not show higher modes of vibration in the frequency range investigated (1.5-20 kHz). The anterior tympanal membrane acts as a low-pass filter, attenuating sounds at frequencies above 3.5 kHz, in contrast to the high-pass filter characteristic of other bushcricket tympana. Responses to higher frequencies are partitioned to the posterior tympanal membrane, which shows maximal sensitivity at several broad frequency ranges, peaking at 3.1, 7.4 and 14.4 kHz. This partitioning between the two tympanal membranes constitutes an unusual feature of peripheral auditory processing in insects. The complex tracheal shape of O. uninotatus also deviates from the known tube or horn shapes associated with simple band-pass or high-pass amplification of tracheal input to the tympana. Interestingly, while the anterior tympanal membrane shows directional sensitivity at conspecific call frequencies, the posterior tympanal membrane is not directional at conspecific frequencies and instead shows directionality at higher frequencies.


Assuntos
Comunicação Animal , Ortópteros/anatomia & histologia , Ortópteros/fisiologia , Estimulação Acústica , Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Animais , Feminino , Índia , Masculino , Localização de Som , Vibração , Microtomografia por Raio-X
18.
Proc Natl Acad Sci U S A ; 109(22): E1444-52, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22547790

RESUMO

Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.


Assuntos
Gryllidae/fisiologia , Som , Vocalização Animal/fisiologia , Asas de Animais/fisiologia , Estimulação Acústica , Algoritmos , Animais , Análise de Elementos Finitos , Gryllidae/classificação , Cinética , Masculino , Modelos Biológicos , Transdução de Sinais/fisiologia , Vibração
19.
J Exp Biol ; 214(Pt 15): 2569-78, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21753051

RESUMO

Animals communicate in non-ideal and noisy conditions. The primary method they use to improve communication efficiency is sender-receiver matching: the receiver's sensory mechanism filters the impinging signal based on the expected signal. In the context of acoustic communication in crickets, such a match is made in the frequency domain. The males broadcast a mate attraction signal, the calling song, in a narrow frequency band centred on the carrier frequency (CF), and the females are most sensitive to sound close to this frequency. In tree crickets, however, the CF changes with temperature. The mechanisms used by female tree crickets to accommodate this change in CF were investigated at the behavioural and biomechanical level. At the behavioural level, female tree crickets were broadly tuned and responded equally to CFs produced within the naturally occurring range of temperatures (18 to 27°C). To allow such a broad response, however, the transduction mechanisms that convert sound into mechanical and then neural signals must also have a broad response. The tympana of the female tree crickets exhibited a frequency response that was even broader than suggested by the behaviour. Their tympana vibrate with equal amplitude to frequencies spanning nearly an order of magnitude. Such a flat frequency response is unusual in biological systems and cannot be modelled as a simple mechanical system. This feature of the tree cricket auditory system not only has interesting implications for mate choice and species isolation but may also prove exciting for bio-mimetic applications such as the design of miniature low frequency microphones.


Assuntos
Gryllidae/fisiologia , Estimulação Acústica , Comunicação Animal , Estruturas Animais/fisiologia , Animais , Percepção Auditiva , Orelha/fisiologia , Feminino , Audição , Índia , Masculino , Vibração
20.
J Acoust Soc Am ; 126(5): 2768-78, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19894852

RESUMO

Elephants use vocalizations for both long and short distance communication. Whereas the acoustic repertoire of the African elephant (Loxodonta africana) has been extensively studied in its savannah habitat, very little is known about the structure and social context of the vocalizations of the Asian elephant (Elephas maximus), which is mostly found in forests. In this study, the vocal repertoire of wild Asian elephants in southern India was examined. The calls could be classified into four mutually exclusive categories, namely, trumpets, chirps, roars, and rumbles, based on quantitative analyses of their spectral and temporal features. One of the call types, the rumble, exhibited high structural diversity, particularly in the direction and extent of frequency modulation of calls. Juveniles produced three of the four call types, including trumpets, roars, and rumbles, in the context of play and distress. Adults produced trumpets and roars in the context of disturbance, aggression, and play. Chirps were typically produced in situations of confusion and alarm. Rumbles were used for contact calling within and among herds, by matriarchs to assemble the herd, in close-range social interactions, and during disturbance and aggression. Spectral and temporal features of the four call types were similar between Asian and African elephants.


Assuntos
Acústica , Comportamento Animal , Elefantes/fisiologia , Comportamento Social , Vocalização Animal/fisiologia , Fatores Etários , Animais , Animais Selvagens , Feminino , Índia , Masculino , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...