Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(7): 076501, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427873

RESUMO

Transport measurement, which applies an electric field and studies the migration of charged particles, i.e., the current, is the most widely used technique in condensed matter studies. It is generally assumed that the quantum phase remains unchanged when it hosts a sufficiently small probing current, which is, surprisingly, rarely examined experimentally. In this Letter, we study the ultra-high-mobility two-dimensional electron system using a propagating surface acoustic wave, whose traveling speed is affected by the electrons' compressibility. The acoustic power used in our Letter is several orders of magnitude lower than previous reports, and its induced perturbation to the system is smaller than the transport current. Therefore we are able to observe the quantum phases become more incompressible when hosting a perturbative current.

2.
Proc Natl Acad Sci U S A ; 120(52): e2314212120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113254

RESUMO

The discovery of the fractional quantum Hall state (FQHS) in 1982 ushered a new era of research in many-body condensed matter physics. Among the numerous FQHSs, those observed at even-denominator Landau level filling factors are of particular interest as they may host quasiparticles obeying non-Abelian statistics and be of potential use in topological quantum computing. The even-denominator FQHSs, however, are scarce and have been observed predominantly in low-disorder two-dimensional (2D) systems when an excited electron Landau level is half filled. An example is the well-studied FQHS at filling factor [Formula: see text] 5/2 which is believed to be a Bardeen-Cooper-Schrieffer-type, paired state of flux-particle composite fermions (CFs). Here, we report the observation of even-denominator FQHSs at [Formula: see text] 3/10, 3/8, and 3/4 in the lowest Landau level of an ultrahigh-quality GaAs 2D hole system, evinced by deep minima in longitudinal resistance and developing quantized Hall plateaus. Quite remarkably, these states can be interpreted as even-denominator FQHSs of CFs, emerging from pairing of higher-order CFs when a CF Landau level, rather than an electron or a hole Landau level, is half-filled. Our results affirm enhanced interaction between CFs in a hole system with significant Landau level mixing and, more generally, the pairing of CFs as a valid mechanism for even-denominator FQHSs, and suggest the realization of FQHSs with non-Abelian anyons.

3.
Phys Rev Lett ; 130(24): 246401, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390428

RESUMO

The Wigner crystal, an ordered array of electrons, is one of the very first proposed many-body phases stabilized by the electron-electron interaction. We examine this quantum phase with simultaneous capacitance and conductance measurements, and observe a large capacitive response while the conductance vanishes. We study one sample with four devices whose length scale is comparable with the crystal's correlation length, and deduce the crystal's elastic modulus, permittivity, pinning strength, etc. Such a systematic quantitative investigation of all properties on a single sample has a great promise to advance the study of Wigner crystals.


Assuntos
Elétrons , Módulo de Elasticidade
4.
Nat Commun ; 12(1): 5312, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493723

RESUMO

Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Naïvely, these helical domain walls (hDWs) constitute two counter-propagating chiral states with opposite spins. Coupled to an s-wave superconductor, helical channels are expected to lead to topological superconductivity with high order non-Abelian excitations1-3. Here we investigate transport properties of hDWs in the ν = 2/3 fractional QH regime. Experimentally we found that current carried by hDWs is substantially smaller than the prediction of the naïve model. Luttinger liquid theory of the system reveals redistribution of currents between quasiparticle charge, spin and neutral modes, and predicts the reduction of the hDW current. Inclusion of spin-non-conserving tunneling processes reconciles theory with experiment. The theory confirms emergence of spin modes required for the formation of fractional topological superconductivity.

5.
Nano Lett ; 19(3): 1908-1913, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30785759

RESUMO

We have developed a scanning photoluminescence technique that can directly map out the local two-dimensional electron density with a relative accuracy of ∼2.2 × 108 cm-2. The validity of this approach is confirmed by the observation of the expected density gradient in a high-quality GaAs quantum well sample that was not rotated during the molecular beam epitaxy of its spacer layer. In addition to this global variation in electron density, we observe local density fluctuations across the sample. These random density fluctuations are also seen in samples that were continuously rotated during growth, and we attribute them to residual space charges at the substrate-epitaxy interface. This is corroborated by the fact that the average magnitude of density fluctuations is increased to ∼9 × 109 cm-2 from ∼1.2 × 109 cm-2 when the buffer layer between the substrate and the quantum well is decreased by a factor of 7. Our data provide direct evidence for local density inhomogeneities even in very high-quality two-dimensional carrier systems.

6.
Nat Commun ; 10(1): 287, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655544

RESUMO

Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum wells. In the absence of a magnetic field the quantum wells show a transition from semiconducting-like to metallic behaviour with decreasing temperature. We observe pronounced NLMRs up to 9 Tesla at temperatures above the transition and weak NLMRs in low magnetic fields at temperatures close to the transition and below 5 K. The observed NLMRs show various types of magnetic field behaviour resembling those reported in topological materials. We attribute them to microscopic disorder and use a phenomenological three-resistor model to account for their various features. Our results showcase a contribution of microscopic disorder in the occurrence of unusual phenomena. They may stimulate further work on tuning electronic properties via disorder/defect nano-engineering.

7.
Appl Opt ; 44(14): 2782-91, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15943330

RESUMO

Tunable dispersion compensators are an essential component for optical networks operating at 40 Gbits/s and beyond. One fiber-based tunable dispersion compensator that has proved to be effective consists of a chirped fiber Bragg grating tuned by a thin-film distributed resistive heating element. We describe several modifications to the heater design that minimize temperature-induced higher-order dispersion, eliminate the need for a second stabilization heater when the device is operated at constant ambient temperature, and significantly lower its maximum operating temperature. We demonstrate a tunable dispersion compensator with a single thin-film heater that provides over 500 ps/nm of tunable dispersion over a fixed 100-GHz bandwidth with a maximum operating temperature of less than 125 degrees C above ambient.

8.
Appl Opt ; 42(27): 5407-12, 2003 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-14526827

RESUMO

We describe the design, fabrication, and performance of a high-speed, continuously tunable, and reset-free polarization controller based on nematic liquid-crystal (NLC) microcell wave plates fabricated directly between the tips of optical fibers. This controller utilizes a pulsed driving scheme and optimized NLC materials to achieve a stepwise switching speed of 1 deg/micros, for arbitrary rotation angles with moderately low voltages. This compact microcell design requires no bulk optical components and has the potential to have low insertion loss. We describe the performance of these devices when implemented in polarization mode dispersion compensators for 40 Gbit/s systems. The good optical properties and the nonmechanical, high-speed, and low-power operation suggest that this type of device might be considered for some applications in dynamic compensation of polarization mode dispersion, polarization analysis, polarization division demultiplexing, and polarization scrambling in high-speed optical communication systems.

9.
Proc Natl Acad Sci U S A ; 99(16): 10252-6, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12145323

RESUMO

Soft, conformable electrical contacts provide efficient, noninvasive probes for the transport properties of chemically and mechanically fragile, ultrathin organic semiconducting films. When combined with high-resolution printing and lamination techniques, these soft contacts also form the basis of a powerful technique for fabricating flexible plastic circuits. In this approach, a thin elastomeric film on a plastic substrate supports the electrodes and interconnections; laminating this substrate against another plastic substrate that supports the gate, dielectric and semiconductor levels establishes effective electrical contacts and completes the circuits. In addition to eliminating many of the problems associated with traditional layer-by-layer fabrication strategies, this lamination scheme possesses other attractive features: the transistors and circuit elements are naturally and efficiently encapsulated, and the active organic semiconductor layer is placed near the neutral mechanical plane. We demonstrate the features of soft, laminated contacts by fabricating large arrays of high-performance thin film transistors on plastic substrates by using a wide variety of organic semiconductors.

10.
J Am Chem Soc ; 124(26): 7654-5, 2002 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12083908

RESUMO

We describe a patterning technique that uses self-assembled monolayers and other surface chemistries for guiding the transfer of material from relief features on a stamp to a substrate. This purely additive contact printing technique is capable of nanometer resolution. Pattern transfer is fast and it occurs at ambient conditions. We illustrate the versatility of this method by printing single-layer metal patterns with feature sizes from a few tens of microns to a few tens of nanometers. We also demonstrate its use for patterning, in a single step, metal/dielectric/metal multilayers for functional thin film capacitors on plastic substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...