Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8374, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589778

RESUMO

Tomato (Solanum lycopersicum) is one of the most economically important vegetable crops worldwide. Bacterial wilt (BW), caused by the Ralstonia solanacearum species complex, has been reported as the second most important plant pathogenic bacteria worldwide, and likely the most destructive. Extensive research has identified two major loci, Bwr-6 and Bwr-12, that contribute to resistance to BW in tomato; however, these loci do not completely explain resistance. Segregation of resistance in two populations that were homozygous dominant or heterozygous for all Bwr-6 and Bwr-12 associated molecular markers suggested the action of one or two resistance loci in addition to these two major QTLs. We utilized whole genome sequence data analysis and pairwise comparison of six BW resistant and nine BW susceptible tomato lines to identify candidate genes that, in addition to Bwr-6 and Bwr-12, contributed to resistance. Through this approach we found 27,046 SNPs and 5975 indels specific to the six resistant lines, affecting 385 genes. One sequence variant on chromosome 3 captured by marker Bwr3.2dCAPS located in the Asc (Solyc03g114600.4.1) gene had significant association with resistance, but it did not completely explain the resistance phenotype. The SNP associated with Bwr3.2dCAPS was located within the resistance gene Asc which was inside the previously identified Bwr-3 locus. This study provides a foundation for further investigations into new loci distributed throughout the tomato genome that could contribute to BW resistance and into the role of resistance genes that may act against multiple pathogens.


Assuntos
Solanum lycopersicum , Resistência à Doença/genética , Teste de Complementação Genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ralstonia/genética
2.
Foods ; 8(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288486

RESUMO

The tropical, warm, and humid conditions that are favorable to the growth and development of mycotoxigenic fungi put the Philippines at a high risk of mycotoxin contamination. To date, seven mycotoxigenic Aspergillus species, four Fusarium species, and one Penicillium species have been isolated from various agricultural crop commodities in the country. There are five mycotoxin groups (aflatoxin, fumonisin, ochratoxin, nivalenol, and zearalenone) that have been detected in both the raw form and the by-products of major crops grown in the country. Since the first scientific report of aflatoxin contamination in the Philippines in 1972, new information has been generated on mycotoxins and mycotoxigenic fungi, but little has been known of other mycotoxins until the last two decades. Further, despite the increase in the understanding of mycotoxigenic fungi and mycotoxins in the country, very limited knowledge exists on practices and measures that control both the fungi and the toxins. This paper reviews the current literature on mycotoxigenic fungi and mycotoxins in the Philippines with emphasis on the last two decades and on other mycotoxins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...