Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Korean J Parasitol ; 60(5): 317-325, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36320108

RESUMO

Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the master regulators of immune and metabolic cellular functions. HIF-1α, a transcriptional factor whose activity is closely related to oxygen levels, is a target for understanding infectious disease control. Several studies have demonstrated that HIF-1α plays an important role during the infectious process, while its role in relation to parasite virulence has not been addressed. In this work, we studied the expression levels of HIF-1α and related angiogenic vascular endothelial growth factor A (VEGF-A) in human macrophages infected with promastigotes of hypo- or hyper-virulent Leishmania major human isolates. L. major parasites readily subverted host macrophage functions for their survival and induced local oxygen consumption at the site of infection. In contrast to hypo-virulent parasites that induce high HIF-1α expression levels, hyper-virulent L. major reduced HIF-1α expression in macrophages under normoxic or hypoxic conditions, and consequently impeded the expression of VEGF-A mRNA. HIF-1α may play a key role during control of disease chronicity, severity, or outcome.


Assuntos
Leishmania major , Leishmaniose , Parasitos , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular , Virulência , Macrófagos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo
2.
Front Cell Infect Microbiol ; 12: 839216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967864

RESUMO

In human cutaneous leishmaniasis (HCL) caused by Leishmania (L.) major, the cutaneous lesions heal spontaneously and induce a Th1-type immunity that confers solid protection against reinfection. The same holds true for the experimental leishmaniasis induced by L. major in C57BL/6 mice where residual parasites persist after spontaneous clinical cure and induce sustainable memory immune responses and resistance to reinfection. Whether residual parasites also persist in scars of cured HCL caused by L. major is still unknown. Cutaneous scars from 53 volunteers with healed HCL caused by L. major were biopsied and the tissue sample homogenates were analyzed for residual parasites by four methods: i) microscope detection of amastigotes, ii) parasite culture by inoculation on biphasic medium, iii) inoculation of tissue exctracts to the footpad of BALB/c mice, an inbred strain highly susceptible to L. major, and iv) amplification of parasite kDNA by a highly sensitive real-time PCR (RT-PCR). Our results show that the scars of healed lesions of HCL caused by L. major do not contain detectable residual parasites, suggesting that this form likely induces a sterile cure at least within the scars. This feature contrasts with other Leishmania species causing chronic, diffuse, or recidivating forms of leishmaniasis where parasites do persist in healed lesions. The possibility that alternative mechanisms to parasite persistence are needed to boost and maintain long-term immunity to L. major, should be taken into consideration in vaccine development against L. major infection.


Assuntos
Leishmania major , Leishmaniose Cutânea , Parasitos , Animais , Cicatriz , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reinfecção
3.
Microorganisms ; 10(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35336081

RESUMO

The clinical expression of zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania (L.) major parasites has a broad spectrum ranging from asymptomatic infection to self-limited cutaneous sores or severe disease. In concert with the host immune responses, the vector variability and the number of bites, genetic variation between L. major isolates might impact on the clinical output of the disease. We investigated herein the intra-specific variability of L. major field isolates independently of host or vector factors and then tried to correlate parasite variability to ZCL severity in corresponding patients. Several assays were applied, i.e., in vivo pathogenicity of promastigotes in a BALB/c mice model, resistance/sensibility to complement lysis, in vitro growth kinetics, and expression of different lectins on the promastigote surface. Combining all these parameters allowed us to conclude that the resistance to complement lysis and PNA/Jacalin lectins binding to parasite surfaces are important markers of parasite virulence. These factors correlate significantly with clinic polymorphism of ZCL and modestly with genetic micro-heterogeneity, a characteristic we previously revealed with a MLMT profile.

4.
mBio ; 9(6)2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401775

RESUMO

Protozoan parasites of the genus Leishmania adapt to environmental change through chromosome and gene copy number variations. Only little is known about external or intrinsic factors that govern Leishmania genomic adaptation. Here, by conducting longitudinal genome analyses of 10 new Leishmania clinical isolates, we uncovered important differences in gene copy number among genetically highly related strains and revealed gain and loss of gene copies as potential drivers of long-term environmental adaptation in the field. In contrast, chromosome rather than gene amplification was associated with short-term environmental adaptation to in vitro culture. Karyotypic solutions were highly reproducible but unique for a given strain, suggesting that chromosome amplification is under positive selection and dependent on species- and strain-specific intrinsic factors. We revealed a progressive increase in read depth towards the chromosome ends for various Leishmania isolates, which may represent a nonclassical mechanism of telomere maintenance that can preserve integrity of chromosome ends during selection for fast in vitro growth. Together our data draw a complex picture of Leishmania genomic adaptation in the field and in culture, which is driven by a combination of intrinsic genetic factors that generate strain-specific phenotypic variations, which are under environmental selection and allow for fitness gain.IMPORTANCE Protozoan parasites of the genus Leishmania cause severe human and veterinary diseases worldwide, termed leishmaniases. A hallmark of Leishmania biology is its capacity to adapt to a variety of unpredictable fluctuations inside its human host, notably pharmacological interventions, thus, causing drug resistance. Here we investigated mechanisms of environmental adaptation using a comparative genomics approach by sequencing 10 new clinical isolates of the L. donovani, L. major, and L. tropica complexes that were sampled across eight distinct geographical regions. Our data provide new evidence that parasites adapt to environmental change in the field and in culture through a combination of chromosome and gene amplification that likely causes phenotypic variation and drives parasite fitness gains in response to environmental constraints. This novel form of gene expression regulation through genomic change compensates for the absence of classical transcriptional control in these early-branching eukaryotes and opens new venues for biomarker discovery.


Assuntos
Adaptação Fisiológica/genética , Dosagem de Genes , Genoma de Protozoário , Cariótipo , Leishmania donovani/genética , Telômero/genética , Animais , Cromossomos/genética , Cricetinae/parasitologia , Variações do Número de Cópias de DNA , Cães/parasitologia , Evolução Molecular , Amplificação de Genes , Regulação da Expressão Gênica , Genes de Protozoários , Aptidão Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/parasitologia
5.
Biochimie ; 146: 119-126, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29246663

RESUMO

Leishmaniasis is a parasitic reticuloendotheliosis whose pathogen is a zooflagellate belonging to the genus Leishmania transmitted by the bite of an infected phlebotome. Recently, a unique secretory lipase from the human pathogen Leishmania donovani Ldlip3 has been identified and characterized. This lipase has a high identity with a putative triacylglycerol lipase of Leishmania major (Lmlip2). In the present study, Lmlip2 was expressed in the eukaryotic heterologous expression system Pichia pastoris as tagged enzyme of 308 amino acids. Maximal protein production was reached after 2 days of fermentation. Optimal Lmlip2 lipase activity was measured using the pH stat technique at pH 8 at 26 °C using vinyl esters and triacylglycerols (true lipids) as substrates. Moreover, biochemical characterization of Lmlip2 contained in culture supernatant, illustrates that L. major secreted lipase is active and stable at low temperatures especially 26°and prefer neutral pH; concerning substrate specificityLmlip2 presents a preference for short chains lipid substrates vinyl esters such as VC2, VC3 and VC4 likewise, it is capable to hydrolyze long chain triacylglycerols like olive oil. Metal ions and surfactants tested in this study decrease Lmlip2 activity. Further studies are needed to clarify the relation between the lipase activity and the virulence. Thus, it could lead to the identification of novel targets to block cutaneous Leishmaniasis in human hosts.


Assuntos
Leishmania major/enzimologia , Leishmania major/genética , Lipase/genética , Lipase/metabolismo , Pichia/genética , Sequência de Aminoácidos , Sequência de Bases , Biocatálise , Clonagem Molecular , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Lipase/antagonistas & inibidores , Lipase/química , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Temperatura
6.
Infect Genet Evol ; 50: 110-120, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27818279

RESUMO

Zoonotic cutaneous leishmaniasis caused by Leishmania (L.) major parasites affects urban and suburban areas in the center and south of Tunisia where the disease is endemo-epidemic. Several cases were reported in human patients for which infection due to L. major induced lesions with a broad range of severity. However, very little is known about the mechanisms underlying this diversity. Our hypothesis is that parasite genomic variability could, in addition to the host immunological background, contribute to the intra-species clinical variability observed in patients and explain the lesion size differences observed in the experimental model. Based on several epidemiological, in vivo and in vitro experiments, we focused on two clinical isolates showing contrasted severity in patients and BALB/c experimental mice model. We used DNA-seq as a high-throughput technology to facilitate the identification of genetic variants with discriminating potential between both isolates. Our results demonstrate that various levels of heterogeneity could be found between both L. major isolates in terms of chromosome or gene copy number variation (CNV), and that the intra-species divergence could surprisingly be related to single nucleotide polymorphisms (SNPs) and Insertion/Deletion (InDels) events. Interestingly, we particularly focused here on genes affected by both types of variants and correlated them with the observed gene CNV. Whether these differences are sufficient to explain the severity in patients is obviously still open to debate, but we do believe that additional layers of -omic information is needed to complement the genomic screen in order to draw a more complete map of severity determinants.


Assuntos
Cromossomos/química , Doenças Endêmicas , Dosagem de Genes , Leishmania major/genética , Leishmaniose Cutânea/epidemiologia , Filogenia , Animais , DNA de Protozoário/genética , Feminino , Seguimentos , Genômica , Humanos , Mutação INDEL , Leishmania major/classificação , Leishmania major/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/transmissão , Camundongos , Camundongos Endogâmicos BALB C , Filogeografia , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Tunísia/epidemiologia
7.
Parasitology ; 143(12): 1615-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27312247

RESUMO

Synthesized lipophilic tyrosyl ester derivatives with increasing lipophilicity were effective against Leishmania (L.) major and Leishmania infantum species in vitro. These findings prompted us to test in vivo leishmanicidal properties of these molecules and their potential effect on the modulation of immune responses. The experimental BALB/c model of cutaneous leishmaniasis was used in this study. Mice were infected with L. major parasites and treated with three in vitro active tyrosyl esters derivatives. Among these tested tyrosylcaprate (TyC) compounds, only TyC10 exhibited an in vivo anti-leishmanial activity, when injected sub-cutaneously (s.c.). TyC10 treatment of L. major-infected BALB/c mice resulted in a decrease of lesion development and parasite load. TyC10 s.c. treatment of non-infected mice induced an imbalance in interferon γ/interleukin 4 (IFN-γ/IL-4) ratio cytokines towards a Th1 response. Our results indicate that TyC10 s.c. treatment improves lesions' healing and parasite clearance and may act on the cytokine balance towards a Th1 protective response by decreasing IL-4 and increasing IFN-γ transcripts. TyC10 is worthy of further investigation to uncover its mechanism of action that could lead to consider this molecule as a potential drug candidate.


Assuntos
Antiprotozoários/administração & dosagem , Fatores Imunológicos/administração & dosagem , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Células Th1/imunologia , Tirosina/análogos & derivados , Tirosina/farmacologia
8.
Infect Genet Evol ; 43: 179-85, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27137082

RESUMO

Tunisia is endemic for zoonotic cutaneous leishmaniasis (ZCL), a parasitic disease caused by Leishmania (L.) major. ZCL displays a wide clinical polymorphism, with severe forms present more frequently in emerging foci where naive populations are dominant. In this study, we applied the multi-locus microsatellite typing (MLMT) using ten highly informative and discriminative markers to investigate the genetic structure of 35 Tunisian Leishmania (L.) major isolates collected from patients living in five different foci of Central Tunisia (two old and three emerging foci). Phylogenetic reconstructions based on genetic distances showed that nine of the ten tested loci were homogeneous in all isolates with homozygous alleles, whereas one locus (71AT) had a 58/64-bp bi-allelic profile with an allele linked to emerging foci. Promastigote-stage parasites with the 58-bp allele tend to be more resistant to in vitro complement lysis. These results, which stress the geographical dependence of the genetic micro-heterogeneity, may improve our understanding of the ZCL epidemiology and clinical outcome.


Assuntos
DNA de Protozoário/genética , Doenças Endêmicas , Genoma de Protozoário , Leishmania major/genética , Leishmaniose Cutânea/epidemiologia , Estágios do Ciclo de Vida/genética , Filogenia , Alelos , Animais , Heterogeneidade Genética , Loci Gênicos , Humanos , Leishmania major/classificação , Leishmania major/crescimento & desenvolvimento , Leishmania major/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/transmissão , Repetições de Microssatélites , Tipagem de Sequências Multilocus , Psychodidae/parasitologia , Tunísia/epidemiologia , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA