Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Nat Neurosci ; 27(10): 1934-1944, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39251890

RESUMO

Brain function requires a constant supply of glucose. However, the brain has no known energy stores, except for glycogen granules in astrocytes. In the present study, we report that continuous oligodendroglial lipid metabolism provides an energy reserve in white matter tracts. In the isolated optic nerve from young adult mice of both sexes, oligodendrocytes survive glucose deprivation better than astrocytes. Under low glucose, both axonal ATP levels and action potentials become dependent on fatty acid ß-oxidation. Importantly, ongoing oligodendroglial lipid degradation feeds rapidly into white matter energy metabolism. Although not supporting high-frequency spiking, fatty acid ß-oxidation in mitochondria and oligodendroglial peroxisomes protects axons from conduction blocks when glucose is limiting. Disruption of the glucose transporter GLUT1 expression in oligodendrocytes of adult mice perturbs myelin homeostasis in vivo and causes gradual demyelination without behavioral signs. This further suggests that the imbalance of myelin synthesis and degradation can underlie myelin thinning in aging and disease.


Assuntos
Metabolismo Energético , Ácidos Graxos , Oligodendroglia , Animais , Oligodendroglia/metabolismo , Metabolismo Energético/fisiologia , Camundongos , Ácidos Graxos/metabolismo , Masculino , Feminino , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Nervo Óptico/metabolismo , Metabolismo dos Lipídeos/fisiologia , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Mitocôndrias/metabolismo , Camundongos Transgênicos , Sistema Nervoso Central/metabolismo , Substância Branca/metabolismo
3.
Nat Commun ; 15(1): 8334, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333072

RESUMO

Autophagy, a highly conserved self-digestion process crucial for cellular homeostasis, is triggered by various environmental signals, including nutrient scarcity. The regulation of lysosomal and autophagy-related processes is pivotal to maintaining cellular homeostasis and basal metabolism. The consequences of disrupting or diminishing lysosomal and autophagy systems have been investigated; however, information on the implications of hyperactivating lysosomal and autophagy genes on homeostasis is limited. Here, we present a mechanism of transcriptional repression involving upstream stimulatory factor 2 (USF2), which inhibits lysosomal and autophagy genes under nutrient-rich conditions. We find that USF2, together with HDAC1, binds to the CLEAR motif within lysosomal genes, thereby diminishing histone H3K27 acetylation, restricting chromatin accessibility, and downregulating lysosomal gene expression. Under starvation, USF2 competes with transcription factor EB (TFEB), a master transcriptional activator of lysosomal and autophagy genes, to bind to target gene promoters in a phosphorylation-dependent manner. The GSK3ß-mediated phosphorylation of the USF2 S155 site governs USF2 DNA-binding activity, which is involved in lysosomal gene repression. These findings have potential applications in the treatment of protein aggregation-associated diseases, including α1-antitrypsin deficiency. Notably, USF2 repression is a promising therapeutic strategy for lysosomal and autophagy-related diseases.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Fatores Estimuladores Upstream , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lisossomos/metabolismo , Autofagia/genética , Humanos , Fatores Estimuladores Upstream/metabolismo , Fatores Estimuladores Upstream/genética , Fosforilação , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Células HEK293 , Animais , Histonas/metabolismo , Células HeLa , Camundongos , Acetilação
4.
Nat Commun ; 15(1): 6971, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138218

RESUMO

Ligation of the B cell antigen receptor (BCR) initiates humoral immunity. However, BCR signaling without appropriate co-stimulation commits B cells to death rather than to differentiation into immune effector cells. How BCR activation depletes potentially autoreactive B cells while simultaneously primes for receiving rescue and differentiation signals from cognate T lymphocytes remains unknown. Here, we use a mass spectrometry-based proteomic approach to identify cytosolic/nuclear shuttling elements and uncover transcription factor EB (TFEB) as a central BCR-controlled rheostat that drives activation-induced apoptosis, and concurrently promotes the reception of co-stimulatory rescue signals by supporting B cell migration and antigen presentation. CD40 co-stimulation prevents TFEB-driven cell death, while enhancing and prolonging TFEB's nuclear residency, which hallmarks antigenic experience also of memory B cells. In mice, TFEB shapes the transcriptional landscape of germinal center B cells. Within the germinal center, TFEB facilitates the dark zone entry of light-zone-residing centrocytes through regulation of chemokine receptors and, by balancing the expression of Bcl-2/BH3-only family members, integrates antigen-induced apoptosis with T cell-provided CD40 survival signals. Thus, TFEB reprograms antigen-primed germinal center B cells for cell fate decisions.


Assuntos
Apoptose , Linfócitos B , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Antígenos CD40 , Centro Germinativo , Receptores de Antígenos de Linfócitos B , Animais , Centro Germinativo/imunologia , Centro Germinativo/citologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camundongos , Antígenos CD40/metabolismo , Antígenos CD40/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Camundongos Endogâmicos C57BL , Ativação Linfocitária/imunologia , Diferenciação Celular/imunologia , Transdução de Sinais , Apresentação de Antígeno/imunologia
5.
Cancers (Basel) ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39001394

RESUMO

The correlation between TNM staging and histology variations in a sample of patients who underwent neoadjuvant chemotherapy demonstrates a positive impact on both increasing conservative surgery and achieving pCR, resulting in better outcomes in terms of disease-free survival (DFS) and the risk of relapse. Benefits have also been highlighted in terms of cosmetic outcomes, postoperative complications, and psychological benefits. However, the overall outcomes must be evaluated according to the subtype and individual characteristics of the patients.

6.
Nat Commun ; 15(1): 5812, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987251

RESUMO

RagGTPases (Rags) play an essential role in the regulation of cell metabolism by controlling the activities of both mechanistic target of rapamycin complex 1 (mTORC1) and Transcription factor EB (TFEB). Several diseases, herein named ragopathies, are associated to Rags dysfunction. These diseases may be caused by mutations either in genes encoding the Rags, or in their upstream regulators. The resulting phenotypes may encompass a variety of clinical features such as cataract, kidney tubulopathy, dilated cardiomyopathy and several types of cancer. In this review, we focus on the key clinical, molecular and physio-pathological features of ragopathies, aiming to shed light on their underlying mechanisms.


Assuntos
Mutação , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Animais , Catarata/genética , Cardiomiopatia Dilatada/genética
7.
Cell Death Differ ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965447

RESUMO

TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, globally modulates cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying this phenotype has remained elusive. By integrating in vivo analyses with multi-omics approaches and functional assays, we have uncovered an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Our findings demonstrate that constitutive loss of TFEB in knock-out mice is associated with defective formation of the syncytiotrophoblast layer. Indeed, using in vitro models of syncytialization, we demonstrated that TFEB translocates into the nucleus during syncytiotrophoblast formation and binds to the promoters of crucial placental genes, including genes encoding fusogenic proteins (Syncytin-1 and Syncytin-2) and enzymes involved in steroidogenic pathways, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17ß-Estradiol (E2). Conversely, TFEB depletion impairs both syncytial fusion and endocrine properties of syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placental hormones and E2 production. Notably, restoration of TFEB expression resets syncytiotrophoblast identity. Our findings identify that TFEB controls placental development and function by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.

8.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38853929

RESUMO

Batten disease is characterized by early-onset blindness, juvenile dementia and death during the second decade of life. The most common genetic causes are mutations in the CLN3 gene encoding a lysosomal protein. There are currently no therapies targeting the progression of the disease, mostly due to the lack of knowledge about the disease mechanisms. To gain insight into the impact of CLN3 loss on cellular signaling and organelle function, we generated CLN3 knock-out cells in a human cell line (CLN3-KO), and performed RNA sequencing to obtain the cellular transcriptome. Following a multi-dimensional transcriptome analysis, we identified the transcriptional regulator YAP1 as a major driver of the transcriptional changes observed in CLN3-KO cells. We further observed that YAP1 pro-apoptotic signaling is hyperactive as a consequence of CLN3 functional loss in retinal pigment epithelia cells, and in the hippocampus and thalamus of CLN3exΔ7/8 mice, an established model of Batten disease. Loss of CLN3 activates YAP1 by a cascade of events that starts with the inability of releasing glycerophosphodiesthers from CLN3-KO lysosomes, which leads to perturbations in the lipid content of the nuclear envelope and nuclear dysmorphism. This results in increased number of DNA lesions, activating the kinase c-Abl, which phosphorylates YAP1, stimulating its pro-apoptotic signaling. Altogether, our results highlight a novel organelle crosstalk paradigm in which lysosomal metabolites regulate nuclear envelope content, nuclear shape and DNA homeostasis. This novel molecular mechanism underlying the loss of CLN3 in mammalian cells and tissues may open new c-Abl-centric therapeutic strategies to target Batten disease.

9.
Kidney Blood Press Res ; 49(1): 637-645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38901414

RESUMO

BACKGROUND: A hereditary condition primarily affecting the kidneys and heart has newly been identified: the RRAGD-associated autosomal dominant kidney hypomagnesemia with cardiomyopathy (ADKH-RRAGD). This disorder is characterized by renal loss of magnesium and potassium, coupled with varying degrees of cardiac dysfunction. These range from arrhythmias to severe dilated cardiomyopathy, which may require heart transplantation. Mutations associated with RRAGD significantly disrupt the non-canonical branch of the mechanistic target of rapamycin complex 1 pathway. This disruption hinders the nuclear translocation and transcriptional activity of the transcription factor EB a crucial regulator of lysosomal and autophagic function. SUMMARY: All identified RRAGD variants compromise kidney function, leading to hypomagnesemia and hypokalemia of various severity. The renal phenotype for most of the variants (i.e., S76L, I221K, P119R, P119L) typically manifests in the second decade of life occasionally preceded by childhood symptoms of dilated cardiomyopathy. In contrast, the P88L variant is associated to dilated cardiomyopathy manifesting in adulthood. To date, the T97P variant has not been linked to cardiac involvement. The most severe manifestations of ADKH-RRAGD, particularly concerning electrolyte imbalance and heart dysfunction requiring transplantation in childhood appear to be associated with the S76L, I221K, P119R variants. KEY MESSAGES: This review aimed to provide an overview of the clinical presentation for ADKH-RRAGD, aiming to enhance awareness, promote early diagnosis, and facilitate proper treatment. It also reports on the limited experience in patient management with diuretics, magnesium and potassium supplements, metformin, or calcineurin and SGLT2 inhibitors.


Assuntos
Cardiomiopatias , Humanos , Cardiomiopatias/etiologia , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/terapia , Magnésio/sangue , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/diagnóstico , Hipopotassemia
11.
Nat Commun ; 15(1): 406, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195686

RESUMO

Tuberous Sclerosis Complex (TSC) is caused by TSC1 or TSC2 mutations, leading to hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and lesions  in multiple organs including lung (lymphangioleiomyomatosis) and kidney (angiomyolipoma and renal cell carcinoma). Previously, we found that TFEB is constitutively active in TSC. Here, we generated two mouse models of TSC in which kidney pathology is the primary phenotype. Knockout of TFEB rescues kidney pathology and overall survival, indicating that TFEB is the primary driver of renal disease in TSC. Importantly, increased mTORC1 activity in the TSC2 knockout kidneys is normalized by TFEB knockout. In TSC2-deficient cells, Rheb knockdown or Rapamycin treatment paradoxically increases TFEB phosphorylation at the mTORC1-sites and relocalizes TFEB from nucleus to cytoplasm. In mice, Rapamycin treatment normalizes lysosomal gene expression, similar to TFEB knockout, suggesting that Rapamycin's benefit in TSC is TFEB-dependent. These results change the view of the mechanisms of mTORC1 hyperactivation in TSC and may lead to therapeutic avenues.


Assuntos
Neoplasias Renais , Esclerose Tuberosa , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Sirolimo/farmacologia , Esclerose Tuberosa/genética
12.
Acta Pharm Sin B ; 14(1): 190-206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261809

RESUMO

Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.

13.
Nat Commun ; 15(1): 169, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167818

RESUMO

Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a [Formula: see text] CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on  the same silicon technology compatible platform.

14.
Infect Immun ; 91(11): e0021723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37861312

RESUMO

Myeloid phagocytes of the respiratory immune system, such as neutrophils, monocytes, and alveolar macrophages, are essential for immunity to Aspergillus fumigatus, the most common etiologic agent of mold pneumonia worldwide. Following the engulfment of A. fumigatus conidia, fusion of the phagosome with the lysosome is a critical process for killing conidia. TFEB and TFE3 are transcription factors that regulate lysosomal biogenesis under stress and are activated by inflammatory stimuli in macrophages, but it is unknown whether TFEB and TFE3 contribute to anti-Aspergillus immunity during infection. We found that lung neutrophils express TFEB and TFE3, and their target genes were upregulated during A. fumigatus lung infection. In addition, A. fumigatus infection induced nuclear accumulation of TFEB and TFE3 in macrophages in a process regulated by Dectin-1 and CARD9. Genetic deletion of Tfeb and Tfe3 impaired macrophage killing of A. fumigatus conidia. However, in a murine immune-competent Aspergillus infection model with genetic deficiency of Tfeb and Tfe3 in hematopoietic cells, we surprisingly found that lung myeloid phagocytes had no defects in conidial phagocytosis or killing. Loss of TFEB and TFE3 did not impact murine survival or clearance of A. fumigatus from the lungs. Our findings indicate that myeloid phagocytes activate TFEB and TFE3 in response to A. fumigatus, and while this pathway promotes macrophage fungicidal activity in vitro, genetic loss can be functionally compensated in the lung, resulting in no measurable defect in fungal control and host survival.


Assuntos
Aspergilose , Pneumonia , Animais , Camundongos , Aspergillus fumigatus , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Redes Reguladoras de Genes , Pulmão , Fagócitos
15.
EMBO J ; 42(21): e113928, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37712288

RESUMO

To fulfill their function, pancreatic beta cells require precise nutrient-sensing mechanisms that control insulin production. Transcription factor EB (TFEB) and its homolog TFE3 have emerged as crucial regulators of the adaptive response of cell metabolism to environmental cues. Here, we show that TFEB and TFE3 regulate beta-cell function and insulin gene expression in response to variations in nutrient availability. We found that nutrient deprivation in beta cells promoted TFEB/TFE3 activation, which resulted in suppression of insulin gene expression. TFEB overexpression was sufficient to inhibit insulin transcription, whereas beta cells depleted of both TFEB and TFE3 failed to suppress insulin gene expression in response to amino acid deprivation. Interestingly, ChIP-seq analysis showed binding of TFEB to super-enhancer regions that regulate insulin transcription. Conditional, beta-cell-specific, Tfeb-overexpressing, and Tfeb/Tfe3 double-KO mice showed severe alteration of insulin transcription, secretion, and glucose tolerance, indicating that TFEB and TFE3 are important physiological mediators of pancreatic function. Our findings reveal a nutrient-controlled transcriptional mechanism that regulates insulin production, thus playing a key role in glucose homeostasis at both cellular and organismal levels.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Insulina , Animais , Camundongos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Expressão Gênica , Glucose , Lisossomos/metabolismo
16.
Nat Commun ; 14(1): 3911, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400440

RESUMO

Batten disease, one of the most devastating types of neurodegenerative lysosomal storage disorders, is caused by mutations in CLN3. Here, we show that CLN3 is a vesicular trafficking hub connecting the Golgi and lysosome compartments. Proteomic analysis reveals that CLN3 interacts with several endo-lysosomal trafficking proteins, including the cation-independent mannose 6 phosphate receptor (CI-M6PR), which coordinates the targeting of lysosomal enzymes to lysosomes. CLN3 depletion results in mis-trafficking of CI-M6PR, mis-sorting of lysosomal enzymes, and defective autophagic lysosomal reformation. Conversely, CLN3 overexpression promotes the formation of multiple lysosomal tubules, which are autophagy and CI-M6PR-dependent, generating newly formed proto-lysosomes. Together, our findings reveal that CLN3 functions as a link between the M6P-dependent trafficking of lysosomal enzymes and lysosomal reformation pathway, explaining the global impairment of lysosomal function in Batten disease.


Assuntos
Glicoproteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Proteômica , Chaperonas Moleculares/metabolismo , Lisossomos/metabolismo , Hidrolases/metabolismo , Autofagia
17.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398416

RESUMO

Myeloid phagocytes of the respiratory immune system, such as neutrophils, monocytes, and alveolar macrophages, are essential for immunity to Aspergillus fumigatus, the most common etiologic agent of mold pneumonia worldwide. Following engulfment of A. fumigatus conidia, fusion of the phagosome with the lysosome, is a critical process for killing conidia. TFEB and TFE3 are transcription factors that regulate lysosomal biogenesis under stress and are activated by inflammatory stimuli in macrophages, but it is unknown whether TFEB and TFE3 contribute to anti-Aspergillus immunity during infection. We found that lung neutrophils express TFEB and TFE3, and their target genes were upregulated during A. fumigatus lung infection. Additionally, A. fumigatus infection induced nuclear accumulation of TFEB and TFE3 in macrophages in a process regulated by Dectin-1 and CARD9 signaling. Genetic deletion of Tfeb and Tfe3 impaired macrophage killing of A. fumigatus conidia. However, in a murine immune competent Aspergillus infection model with genetic deficiency of Tfeb and Tfe3 in hematopoietic cells, we surprisingly found that lung myeloid phagocytes had no defects in conidial phagocytosis or killing. Loss of TFEB and TFE3 did not impact murine survival or clearance of A. fumigatus from the lungs. Our findings indicate that myeloid phagocytes activate TFEB and TFE3 in response to A. fumigatus, and while this pathway promotes macrophage fungicidal activity in vitro, genetic loss can be functionally compensated at the portal of infection in the lung, resulting in no measurable defect in fungal control and host survival.

18.
Nature ; 619(7970): 616-623, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380769

RESUMO

In metazoan organisms, cell competition acts as a quality control mechanism to eliminate unfit cells in favour of their more robust neighbours1,2. This mechanism has the potential to be maladapted, promoting the selection of aggressive cancer cells3-6. Tumours are metabolically active and are populated by stroma cells7,8, but how environmental factors affect cancer cell competition remains largely unknown. Here we show that tumour-associated macrophages (TAMs) can be dietarily or genetically reprogrammed to outcompete MYC-overexpressing cancer cells. In a mouse model of breast cancer, MYC overexpression resulted in an mTORC1-dependent 'winner' cancer cell state. A low-protein diet inhibited mTORC1 signalling in cancer cells and reduced tumour growth, owing unexpectedly to activation of the transcription factors TFEB and TFE3 and mTORC1 in TAMs. Diet-derived cytosolic amino acids are sensed by Rag GTPases through the GTPase-activating proteins GATOR1 and FLCN to control Rag GTPase effectors including TFEB and TFE39-14. Depletion of GATOR1 in TAMs suppressed the activation of TFEB, TFE3 and mTORC1 under the low-protein diet condition, causing accelerated tumour growth; conversely, depletion of FLCN or Rag GTPases in TAMs activated TFEB, TFE3 and mTORC1 under the normal protein diet condition, causing decelerated tumour growth. Furthermore, mTORC1 hyperactivation in TAMs and cancer cells and their competitive fitness were dependent on the endolysosomal engulfment regulator PIKfyve. Thus, noncanonical engulfment-mediated Rag GTPase-independent mTORC1 signalling in TAMs controls competition between TAMs and cancer cells, which defines a novel innate immune tumour suppression pathway that could be targeted for cancer therapy.


Assuntos
Competição entre as Células , Técnicas de Reprogramação Celular , Imunidade Inata , Neoplasias , Macrófagos Associados a Tumor , Animais , Camundongos , Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Competição entre as Células/genética , Competição entre as Células/imunologia , Proteínas Alimentares/farmacologia , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
19.
Nat Commun ; 14(1): 2775, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188688

RESUMO

Heterozygous mutations in the gene encoding RagD GTPase were shown to cause a novel autosomal dominant condition characterized by kidney tubulopathy and cardiomyopathy. We previously demonstrated that RagD, and its paralogue RagC, mediate a non-canonical mTORC1 signaling pathway that inhibits the activity of TFEB and TFE3, transcription factors of the MiT/TFE family and master regulators of lysosomal biogenesis and autophagy. Here we show that RagD mutations causing kidney tubulopathy and cardiomyopathy are "auto- activating", even in the absence of Folliculin, the GAP responsible for RagC/D activation, and cause constitutive phosphorylation of TFEB and TFE3 by mTORC1, without affecting the phosphorylation of "canonical" mTORC1 substrates, such as S6K. By using HeLa and HK-2 cell lines, human induced pluripotent stem cell-derived cardiomyocytes and patient-derived primary fibroblasts, we show that RRAGD auto-activating mutations lead to inhibition of TFEB and TFE3 nuclear translocation and transcriptional activity, which impairs the response to lysosomal and mitochondrial injury. These data suggest that inhibition of MiT/TFE factors plays a key role in kidney tubulopathy and cardiomyopathy syndrome.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células-Tronco Pluripotentes Induzidas , Humanos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células HeLa , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mutação
20.
Nat Commun ; 14(1): 3086, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248224

RESUMO

Retromer controls cellular homeostasis through regulating integral membrane protein sorting and transport and by controlling maturation of the endo-lysosomal network. Retromer dysfunction, which is linked to neurodegenerative disorders including Parkinson's and Alzheimer's diseases, manifests in complex cellular phenotypes, though the precise nature of this dysfunction, and its relation to neurodegeneration, remain unclear. Here, we perform an integrated multi-omics approach to provide precise insight into the impact of Retromer dysfunction on endo-lysosomal health and homeostasis within a human neuroglioma cell model. We quantify widespread changes to the lysosomal proteome, indicative of broad lysosomal dysfunction and inefficient autophagic lysosome reformation, coupled with a reconfigured cell surface proteome and secretome reflective of increased lysosomal exocytosis. Through this global proteomic approach and parallel transcriptomic analysis, we provide a holistic view of Retromer function in regulating lysosomal homeostasis and emphasise its role in neuroprotection.


Assuntos
Multiômica , Neuroproteção , Humanos , Proteoma/metabolismo , Proteômica , Endossomos/metabolismo , Transporte Proteico/fisiologia , Lisossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...