Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Immunol ; 164: 134-142, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38007901

RESUMO

Apoptosis plays a pivotal role in the immune response to combat pathogen infections. In mammals, caspase-9, abbreviated as Casp9, plays an irreplaceable role in the initiation phase of the apoptotic cascade. To investigate the role of Casp9 in teleosts, we conducted a functional characterization of Casp9 in goldfish (Carassius auratus L.). The open reading frame of GfCasp9 spans 1296 base pairs (bp), encoding a protein composed of 431 amino acids. GfCasp9 was ubiquitously expressed in various tissues, with the spleen and brain showing the highest levels of expression. Subcellular localization analysis revealed that GfCasp9 is distributed in both the cytoplasm and nucleus. Overexpressing of GfCasp9 in HEK293 cells elicits a robust apoptotic response. Additionally, infection with Aeromonas hydrophila significantly increases the mRNA and protein expression of GfCasp9. These findings underscore the critical importance of GfCasp9 in immune responses and apoptosis against bacterial infections.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Humanos , Carpa Dourada/genética , Aeromonas hydrophila/fisiologia , Imunidade Inata/genética , Caspase 9/metabolismo , Células HEK293 , Infecções por Bactérias Gram-Negativas/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Mamíferos
2.
Front Immunol ; 14: 1235370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593738

RESUMO

Background: Macrophage colony-stimulating factor 2 (MCSF-2) is an important cytokine that controls how cells of the monocyte/macrophage lineage proliferate, differentiate, and survive in vertebrates. Two isoforms of MCSF have been identified in fish, each exhibiting distinct gene organization and expression patterns. In this study, we investigated a goldfish MCSF-2 gene in terms of its immunomodulatory and functional properties. Methods: In this study, goldfish were acclimated for 3 weeks and sedated with TMS prior to handling. Two groups of fish were used for infection experiments, and tissues from healthy goldfish were collected for RNA isolation. cDNA synthesis was performed, and primers were designed based on transcriptome database sequences. Analysis of gfMCSF-2 sequences, including nucleotide and amino acid analysis, molecular mass prediction, and signal peptide prediction, was conducted. Real-time quantitative PCR (qPCR) was used to analyze gene expression levels, while goldfish head kidney leukocytes (HKLs) were isolated using standard protocols. The expression of gfMCSF-2 in activated HKLs was investigated, and recombinant goldfish MCSF-2 was expressed and purified. Western blot analysis, cell proliferation assays, and flow cytometric analysis of HKLs were performed. Gene expression analysis of transcription factors and pro-inflammatory cytokines in goldfish head kidney leukocytes exposed to rgMCSF-2 was conducted. Statistical analysis using one-way ANOVA and Dunnett's post hoc test was applied. Results: We performed a comparative analysis of MCSF-1 and MCSF-2 at the protein and nucleotide levels using the Needleman-Wunsch algorithm. The results revealed significant differences between the two sequences, supporting the notion that they represent distinct genes rather than isoforms of the same gene. Sequence alignment demonstrated high sequence identity with MCSF-2 homologs from fish species, particularly C. carpio, which was supported by phylogenetic analysis. Expression analysis in various goldfish tissues demonstrated differential expression levels, with the spleen exhibiting the highest expression. In goldfish head kidney leukocytes, gfMCSF-2 expression was modulated by chemical stimuli and bacterial infection, with upregulation observed in response to lipopolysaccharide (LPS) and live Aeromonas hydrophila. Recombinant gfMCSF-2 (rgMCSF-2) was successfully expressed and purified, showing the ability to stimulate cell proliferation in HKLs. Flow cytometric analysis revealed that rgMCSF-2 induced differentiation of sorted leukocytes at a specific concentration. Moreover, rgMCSF-2 treatment upregulated TNFα and IL-1ß mRNA levels and influenced the expression of transcription factors, such as MafB, GATA2, and cMyb, in a time-dependent manner. Conclusion: Collectively, by elucidating the effects of rgMCSF-2 on cell proliferation, differentiation, and the modulation of pro-inflammatory cytokines and transcription factors, our findings provided a comprehensive understanding of the potential mechanisms underlying gfMCSF-2-mediated immune regulation. These results contribute to the fundamental knowledge of MCSF-2 in teleosts and establish a foundation for further investigations on the role of gfMCSF-2 in fish immune responses.


Assuntos
Carpa Dourada , Fator Estimulador de Colônias de Macrófagos , Animais , Carpa Dourada/genética , Filogenia , Citocinas/genética , Expressão Gênica
3.
Artigo em Inglês | MEDLINE | ID: mdl-37490965

RESUMO

Granulocyte colony-stimulating factor (GCSF) is a member of the hematopoietic growth factor family that acts primarily on neutrophils and neutrophilic precursors to promote cell proliferation and differentiation. Although multiple GCSF genes have been found in teleosts, knowledge of their functions during fish hematopoietic development is still limited. Here, we report for the first time the molecular and functional characterization of two goldfish GCSFs (gfGCSF-a and gfGCSF-b). The open reading frame (ORF) of the gfGCSF-a and gfGCSF-b cDNA transcript consisted respectively of 624 bp and 678 bp with its ORF encoding 207 and 225 amino acids (aa), with a 17 aa signal peptide for each gene and a conserved domain of the IL-6 superfamily. Treatment of goldfish head kidney leukocytes (HKLs) with LPS increased gfGCSF-a and gfGCSF-b mRNA expression levels, also exposure of HKLs to either heat-killed or live A. hydrophila, induced transcriptional upregulation of gfGCSF-a and gfGCSF-b levels. Recombinant gfGCSF-a and gfGCSF-b protein (rgGCSF-a and rgGCSF-b) induced a dose-dependent production of TNFα and IL-1ß from goldfish neutrophils. In vitro experiments showed rgGCSF-a and rgGCSF-b differentially promoted the proliferation and differentiation of leukocytes in goldfish. Furthermore, treatment of HKLs with rgGCSF-a showed significant upregulation of mRNA levels of the hematopoietic transcription factor GATA2, Runx1, MafB, and cMyb, while gfGCSF-b induces not only all four transcriptional factors mentioned above but also CEBPα. Our results indicate that goldfish GCSF-a and GCSF-b are important regulators of neutrophil proliferation and differentiation, which could stimulate different stages and lineages of hematopoiesis.


Assuntos
Carpa Dourada , Fator Estimulador de Colônias de Granulócitos , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Fatores de Transcrição/genética , Granulócitos/metabolismo , RNA Mensageiro/genética , Proteínas de Peixes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...