Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3291, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332235

RESUMO

Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFß), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Feminino , Gravidez , Placenta , Diferenciação Celular/genética , Trofoblastos/metabolismo , Proteína Morfogenética Óssea 5/metabolismo
2.
Nat Neurosci ; 25(11): 1559-1568, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36319771

RESUMO

Most studies of gene expression in the brains of individuals with schizophrenia have focused on cortical regions, but subcortical nuclei such as the striatum are prominently implicated in the disease, and current antipsychotic drugs target the striatum's dense dopaminergic innervation. Here, we performed a comprehensive analysis of the genetic and transcriptional landscape of schizophrenia in the postmortem caudate nucleus of the striatum of 443 individuals (245 neurotypical individuals, 154 individuals with schizophrenia and 44 individuals with bipolar disorder), 210 from African and 233 from European ancestries. Integrating expression quantitative trait loci analysis, Mendelian randomization with the latest schizophrenia genome-wide association study, transcriptome-wide association study and differential expression analysis, we identified many genes associated with schizophrenia risk, including potentially the dopamine D2 receptor short isoform. We found that antipsychotic medication has an extensive influence on caudate gene expression. We constructed caudate nucleus gene expression networks that highlight interactions involving schizophrenia risk. These analyses provide a resource for the study of schizophrenia and insights into risk mechanisms and potential therapeutic targets.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Núcleo Caudado , Estudo de Associação Genômica Ampla , Transcriptoma
3.
Front Hum Neurosci ; 16: 955607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061507

RESUMO

Neurodevelopmental disorders differ considerably between males and females, and fetal brain development is one of the most critical periods to determine risk for these disorders. Transcriptomic studies comparing male and female fetal brain have demonstrated that the highest difference in gene expression occurs in sex chromosomes, but several autossomal genes also demonstrate a slight difference that has not been yet explored. In order to investigate biological pathways underlying fetal brain sex differences, we applied medicine network principles using integrative methods such as co-expression networks (CEMiTool) and regulatory networks (netZoo). The pattern of gene expression from genes in the same pathway tend to reflect biologically relevant phenomena. In this study, network analysis of fetal brain expression reveals regulatory differences between males and females. Integrating two different bioinformatics tools, our results suggest that biological processes such as cell cycle, cell differentiation, energy metabolism and extracellular matrix organization are consistently sex-biased. MSET analysis demonstrates that these differences are relevant to neurodevelopmental disorders, including autism.

4.
Sci Rep ; 9(1): 3086, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816141

RESUMO

Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by obsessions and/or compulsions. Different striatal subregions belonging to the cortico-striato-thalamic circuitry (CSTC) play an important role in the pathophysiology of OCD. The transcriptomes of 3 separate striatal areas (putamen (PT), caudate nucleus (CN) and accumbens nucleus (NAC)) from postmortem brain tissue were compared between 6 OCD and 8 control cases. In addition to network connectivity deregulation, different biological processes are specific to each striatum region according to the tripartite model of the striatum and contribute in various ways to OCD pathophysiology. Specifically, regulation of neurotransmitter levels and presynaptic processes involved in chemical synaptic transmission were shared between NAC and PT. The Gene Ontology terms cellular response to chemical stimulus, response to external stimulus, response to organic substance, regulation of synaptic plasticity, and modulation of synaptic transmission were shared between CN and PT. Most genes harboring common and/or rare variants previously associated with OCD that were differentially expressed or part of a least preserved coexpression module in our study also suggest striatum subregion specificity. At the transcriptional level, our study supports differences in the 3 circuit CSTC model associated with OCD.


Assuntos
Núcleo Caudado , Vias Neurais/fisiopatologia , Núcleo Accumbens , Transtorno Obsessivo-Compulsivo/fisiopatologia , Putamen , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Núcleo Caudado/metabolismo , Núcleo Caudado/fisiopatologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatologia , Putamen/metabolismo , Putamen/fisiopatologia
5.
Am J Med Genet B Neuropsychiatr Genet ; 180(6): 390-414, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30537354

RESUMO

The male-biased prevalence of certain neurodevelopmental disorders and the sex-biased outcomes associated with stress exposure during gestation have been previously described. Here, we hypothesized that genes distinctively targeted by only one or both homologous proteins highly conserved across therian mammals, SOX3 and SRY, could induce sexual adaptive changes that result in a differential risk for neurodevelopmental disorders. ChIP-seq/chip data showed that SOX3/SRY gene targets were expressed in different brain cell types in mice. We used orthologous human genes in rodent genomes to extend the number of SOX3/SRY set (1,721). These genes were later found to be enriched in five modules of coexpressed genes during the early and mid-gestation periods (FDR < 0.05), independent of sexual hormones. Genes with differential expression (24, p < 0.0001) and methylation (40, p < 0.047) between sexes were overrepresented in this set. Exclusive SOX3 or SRY target genes were more associated with the late gestational and postnatal periods. Using autism as a model sex-biased disorder, the SOX3/SRY set was enriched in autism gene databases (FDR ≤ 0.05), and there were more de novo variations from the male autism spectrum disorder (ASD) samples under the SRY peaks compared to the random peaks (p < 0.024). The comparison of coexpressed networks of SOX3/SRY target genes between male autism and control samples revealed low preservation in gene modules related to stress response (99 genes) and neurogenesis (78 genes). This study provides evidence that while SOX3 is a regulatory mechanism for both sexes, the male-exclusive SRY also plays a role in gene regulation, suggesting a potential mechanism for sex bias in ASD.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição SOXB1/genética , Proteína da Região Y Determinante do Sexo/genética , Animais , Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/genética , Bases de Dados Genéticas , Feminino , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Risco , Fatores de Transcrição SOXB1/metabolismo , Cromossomos Sexuais/genética , Fatores Sexuais , Proteína da Região Y Determinante do Sexo/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...