RESUMO
In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-γ; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.
Assuntos
Hemostasia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vacinas Protozoárias/administração & dosagem , Schistosoma mansoni/imunologia , Esquistossomose mansoni/prevenção & controle , Biologia de Sistemas , Animais , Cercárias/imunologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Hemostasia/genética , Interações Hospedeiro-Parasita , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/parasitologia , Camundongos Endogâmicos C57BL , Análise em Microsséries , Vacinas Protozoárias/imunologia , Schistosoma mansoni/patogenicidade , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/parasitologia , Equilíbrio Th1-Th2 , Células Th2/imunologia , Células Th2/metabolismo , Células Th2/parasitologia , Fatores de Tempo , Transcriptoma , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologiaRESUMO
BACKGROUND: Schistosoma mansoni venom allergen-like protein (SmVAL) is a gene family composed of 29 members divided into group 1 encoding proteins potentially secreted, and group 2 encoding intracellular components. Some members were found to be upregulated in the transition of germ ball - cercariae - day 3 schistosomula, suggesting that group 1 SmVAL proteins are associated with the invasion of the human host, although their functions are not completely established. Recently, we have described the localization of SmVAL7 (group 1) and SmVAL6 (group 2) transcripts in the oesophageal gland and in the oral and ventral suckers of adult parasites, respectively. The expression patterns of the two genes suggest that SmVAL7 protein plays a role in the blood-feeding process while SmVAL6 is associated with the parasite attachment and movement in the vasculature. In this way, searching for additional secreted SmVAL proteins that could be involved in key processes from skin penetration to the beginning of blood-feeding, we investigated the tissue localization of SmVAL4, 13, 16 and 24 by whole-mount in situ hybridization (WISH). RESULTS: We report here the localization of group 1 SmVAL4 and 24 transcripts in the pre-acetabular glands of developing germ balls. Time course experiments of in vitro cultured schistosomula after cercariae transformation demonstrated that SmVAL4 protein is secreted during the first 3 h of in vitro culture, correlating with the emptying of acetabular glands as documented by confocal microscopy. In addition, the localization of SmVAL13 transcripts in adult male anterior oesophageal gland suggests that the respective protein may be involved in the first steps of the blood-feeding process. SmVAL16 was localized close to the neural ganglia and requires further investigation. CONCLUSIONS: Our findings demonstrate that SmVAL proteins have localizations that place them in strategic positions to be considered as potential vaccine candidates as some members are exposed to interaction with the immune system and may participate in key processes of mammalian invasion and parasitism establishment.