RESUMO
Water buffalo (Bubalus bubalis) farming is increasing in many regions of the world due to the species' ability to thrive in environments where bovine cattle would struggle. Despite water buffaloes being known for their resistance to diseases, there is a lack of data about the diversity of the microbiome of the species. In this study, we examined the virome diversity in palatine tonsils collected from animals from the island of Marajó, northern Pará state, Brazil, which harbors the largest bubaline flock in the country. Tonsil fragments from 60 clinically healthy bubalines were randomly selected from a sample of 293 animals. The samples were purified, extracted, and randomly amplified with phi29 DNA polymerase. After amplification, the products were purified and sequenced. Circular DNA viruses were predominant in the tonsils' virome. Sequences of genome segments representative of members of the genera Alphapolyomavirus (including a previously unreported bubaline polyomavirus genome) and Gemycircularvirus were identified, along with other not yet classified circular virus genomes. As the animals were clinically healthy at the time of sampling, such viruses likely constitute part of the normal tonsillar virome of water buffaloes inhabiting the Ilha do Marajó biome.
Assuntos
Búfalos , Tonsila Palatina , Filogenia , Polyomavirus , Animais , Búfalos/virologia , Tonsila Palatina/virologia , Brasil , Polyomavirus/genética , Polyomavirus/isolamento & purificação , Polyomavirus/classificação , Viroma , DNA Viral/genética , Genoma ViralRESUMO
BACKGROUND: Chikungunya is a mosquito-borne virus that has been causing large outbreaks in the Americas since 2014. In Brazil, Asian-Caribbean (AC) and East-Central-South-African (ECSA) genotypes have been detected and lead to large outbreaks in several Brazilian states. In Rio Grande do Sul (RS), the southernmost state of Brazil, the first cases were reported in 2016. OBJECTIVES AND METHODS: We employed genome sequencing and epidemiological investigation to characterise the Chikungunya fever (CHIKF) burden in RS between 2017-2021. FINDINGS: We detected an increasing CHIKF burden linked to travel associated introductions and communitary transmission of distinct lineages of the ECSA genotype during this period. MAIN CONCLUSIONS: Until 2020, CHIKV introductions were most travel associated and transmission was limited. Then, in 2021, the largest outbreak occurred in the state associated with the introduction of a new ECSA lineage. CHIKV outbreaks are likely to occur in the near future due to abundant competent vectors and a susceptible population, exposing more than 11 million inhabitants to an increasing infection risk.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Vírus Chikungunya/genética , Brasil/epidemiologia , Viagem , Filogenia , Mosquitos Vetores , Surtos de Doenças , GenótipoRESUMO
This study describes the case of a health professional infected first by influenza virus A(H3N2) and then by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 11 days later. Respiratory samples and clinical data were collected from the patient and from close contacts. RNA was extracted from samples and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to investigate the viruses. The patient presented with two different illness events: the first was characterized by fever, chest and body pain, prostration and tiredness, which ceased on the ninth day; RT-qPCR was positive only for influenza virus A(H3N2). Eleven days after onset of the first symptoms, the patient presented with sore throat, nasal congestion, coryza, nasal itching, sneezing and coughing, and a second RT-qPCR test was positive only for SARS-CoV-2; in the second event, symptoms lasted for 11 days. SARS-CoV-2 sequencing identified the Omicron BA.1 lineage. Of the patient's contacts, one was coinfected with influenza A(H3N2) and SARS-CoV-2 lineage BA.1.15 and the other two were infected only with SARS-CoV-2, one also with Omicron BA.1.15 and the other with BA.1.1. Our findings reinforce the importance of testing for different viruses in cases of suspected respiratory viral infection during routine epidemiological surveillance because common clinical manifestations of COVID-19 mimic those of other viruses, such as influenza.
Este estudio describe el caso de un profesional de la salud que contrajo la infección primero por el virus de la gripe A (H3N2) y a continuación por el coronavirus 2 del síndrome respiratorio agudo grave (SARS-CoV-2) 11 días después. Se recogieron muestras respiratorias y datos clínicos del paciente y sus contactos cercanos. Se extrajo ARN de muestras y se utilizó la reacción en cadena de la polimerasa cuantitativa con transcripción inversa (RT-qPCR, por su sigla en inglés) para investigar los virus. El paciente presentó dos procesos infecciosos distintos: el primero se caracterizó por fiebre, dolor corporal y torácico, postración y cansancio, que cesó en el noveno día. La prueba mediante RT-qPCR solo fue positiva en el virus de la gripe A (H3N2). Once días después del inicio de los primeros síntomas, el paciente manifestó dolor de garganta, congestión nasal, catarro, picazón nasal, estornudos y tos. Una segunda prueba mediante RT-qPCR solo fue positiva para el SARS-CoV-2 y durante este segundo proceso los síntomas duraron 11 días. La secuenciación del SARS-CoV-2 identificó el linaje ómicron BA.1. De los contactos del paciente, uno presentaba una coinfección por el virus de la gripe A (H3N2) y el linaje BA.1.15 del SARS-COV-2, y los otros dos presentaban infecciones únicamente por SARS-CoV-2, uno también del linaje ómicron BA.1.15 y el otro de BA.1.1. Estos hallazgos refuerzan la importancia de realizar pruebas para detectar diferentes virus en casos de sospecha de infección viral respiratoria durante la vigilancia epidemiológica de rutina porque las manifestaciones clínicas comunes de COVID-19 son similares a las de otros virus, como en el caso de la gripe.
Este estudo descreve o caso de uma profissional de saúde infectada primeiro pelo vírus influenza A (H3N2) e, 11 dias depois, pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). Amostras respiratórias e dados clínicos foram coletados da paciente e de contatos próximos. RNA foi extraído das amostras, e o método de reação em cadeia da polimerase via transcriptase reversa quantitativa (RT-qPCR) foi utilizado para investigar os vírus. A paciente apresentou dois quadros clínicos distintos. O primeiro foi caracterizado por febre, dor no peito e no corpo, prostração e fadiga, que cessou no nono dia. A RT-qPCR foi positiva apenas para o vírus da influenza A (H3N2). Onze dias após o início dos primeiros sintomas, a paciente apresentou dor de garganta, congestão nasal, coriza, prurido nasal, espirros e tosse. Um segundo teste de RT-qPCR foi positivo apenas para SARS-CoV-2. No segundo evento, os sintomas duraram 11 dias. O sequenciamento do SARS-CoV-2 identificou a cepa Ômicron BA.1. Dentre os contatos da paciente, um teve coinfeção por influenza A (H3N2) e SARS-COV-2 (cepa BA.1.15), e os outros dois foram infectados apenas por SARS-CoV-2 (um também pela cepa Ômicron BA.1.15 e o outro pela BA.1.1). Nossos achados reforçam a importância de testes para a detecção de diferentes vírus em casos de suspeita de infecção viral respiratória durante a vigilância epidemiológica de rotina, visto que as manifestações clínicas comuns da COVID-19 imitam as de outros vírus, como o vírus influenza.
RESUMO
With the coexistence of multiple lineages and increased international travel, recombination and gene flow are likely to become increasingly important in the adaptive evolution of SARS-CoV-2. These processes could result in genetic introgression and the incipient parallel evolution of multiple recombinant lineages. However, identifying recombinant lineages is challenging, and the true extent of recombinant evolution in SARS-CoV-2 may be underestimated. This study describes the first SARS-CoV-2 Deltacron recombinant case identified in Brazil. We demonstrate that the recombination breakpoint is at the beginning of the Spike gene. The 5' genome portion (circa 22 kb) resembles the AY.101 (Delta), and the 3' genome portion (circa 8 kb nucleotides) is most similar to the BA.1.1 (Omicron). Furthermore, evolutionary genomic analyses indicate that the new strain emerged after a single recombination event between lineages of diverse geographical locations in December 2021 in South Brazil. This Deltacron, AYBA-RS, is one of the dozens of recombinants described in 2022. The submission of only four sequences in the GISAID database suggests that this lineage had a minor epidemiological impact. However, the recent emergence of this and other Deltacron recombinant lineages (XD, XF, and XS) suggests that gene flow and recombination may play an increasingly important role in the COVID-19 pandemic. We explain the evolutionary and population genetic theory that supports this assertion, concluding that this stresses the need for continued genomic surveillance. This monitoring is vital for countries where multiple variants are present, as well as for countries that receive significant inbound international travel.
RESUMO
ABSTRACT This study describes the case of a health professional infected first by influenza virus A(H3N2) and then by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 11 days later. Respiratory samples and clinical data were collected from the patient and from close contacts. RNA was extracted from samples and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to investigate the viruses. The patient presented with two different illness events: the first was characterized by fever, chest and body pain, prostration and tiredness, which ceased on the ninth day; RT-qPCR was positive only for influenza virus A(H3N2). Eleven days after onset of the first symptoms, the patient presented with sore throat, nasal congestion, coryza, nasal itching, sneezing and coughing, and a second RT-qPCR test was positive only for SARS-CoV-2; in the second event, symptoms lasted for 11 days. SARS-CoV-2 sequencing identified the Omicron BA.1 lineage. Of the patient's contacts, one was coinfected with influenza A(H3N2) and SARS-CoV-2 lineage BA.1.15 and the other two were infected only with SARS-CoV-2, one also with Omicron BA.1.15 and the other with BA.1.1. Our findings reinforce the importance of testing for different viruses in cases of suspected respiratory viral infection during routine epidemiological surveillance because common clinical manifestations of COVID-19 mimic those of other viruses, such as influenza.
RESUMEN Este estudio describe el caso de un profesional de la salud que contrajo la infección primero por el virus de la gripe A (H3N2) y a continuación por el coronavirus 2 del síndrome respiratorio agudo grave (SARS-CoV-2) 11 días después. Se recogieron muestras respiratorias y datos clínicos del paciente y sus contactos cercanos. Se extrajo ARN de muestras y se utilizó la reacción en cadena de la polimerasa cuantitativa con transcripción inversa (RT-qPCR, por su sigla en inglés) para investigar los virus. El paciente presentó dos procesos infecciosos distintos: el primero se caracterizó por fiebre, dolor corporal y torácico, postración y cansancio, que cesó en el noveno día. La prueba mediante RT-qPCR solo fue positiva en el virus de la gripe A (H3N2). Once días después del inicio de los primeros síntomas, el paciente manifestó dolor de garganta, congestión nasal, catarro, picazón nasal, estornudos y tos. Una segunda prueba mediante RT-qPCR solo fue positiva para el SARS-CoV-2 y durante este segundo proceso los síntomas duraron 11 días. La secuenciación del SARS-CoV-2 identificó el linaje ómicron BA.1. De los contactos del paciente, uno presentaba una coinfección por el virus de la gripe A (H3N2) y el linaje BA.1.15 del SARS-COV-2, y los otros dos presentaban infecciones únicamente por SARS-CoV-2, uno también del linaje ómicron BA.1.15 y el otro de BA.1.1. Estos hallazgos refuerzan la importancia de realizar pruebas para detectar diferentes virus en casos de sospecha de infección viral respiratoria durante la vigilancia epidemiológica de rutina porque las manifestaciones clínicas comunes de COVID-19 son similares a las de otros virus, como en el caso de la gripe.
RESUMO Este estudo descreve o caso de uma profissional de saúde infectada primeiro pelo vírus influenza A (H3N2) e, 11 dias depois, pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). Amostras respiratórias e dados clínicos foram coletados da paciente e de contatos próximos. RNA foi extraído das amostras, e o método de reação em cadeia da polimerase via transcriptase reversa quantitativa (RT-qPCR) foi utilizado para investigar os vírus. A paciente apresentou dois quadros clínicos distintos. O primeiro foi caracterizado por febre, dor no peito e no corpo, prostração e fadiga, que cessou no nono dia. A RT-qPCR foi positiva apenas para o vírus da influenza A (H3N2). Onze dias após o início dos primeiros sintomas, a paciente apresentou dor de garganta, congestão nasal, coriza, prurido nasal, espirros e tosse. Um segundo teste de RT-qPCR foi positivo apenas para SARS-CoV-2. No segundo evento, os sintomas duraram 11 dias. O sequenciamento do SARS-CoV-2 identificou a cepa Ômicron BA.1. Dentre os contatos da paciente, um teve coinfeção por influenza A (H3N2) e SARS-COV-2 (cepa BA.1.15), e os outros dois foram infectados apenas por SARS-CoV-2 (um também pela cepa Ômicron BA.1.15 e o outro pela BA.1.1). Nossos achados reforçam a importância de testes para a detecção de diferentes vírus em casos de suspeita de infecção viral respiratória durante a vigilância epidemiológica de rotina, visto que as manifestações clínicas comuns da COVID-19 imitam as de outros vírus, como o vírus influenza.
RESUMO
BACKGROUND Chikungunya is a mosquito-borne virus that has been causing large outbreaks in the Americas since 2014. In Brazil, Asian-Caribbean (AC) and East-Central-South-African (ECSA) genotypes have been detected and lead to large outbreaks in several Brazilian states. In Rio Grande do Sul (RS), the southernmost state of Brazil, the first cases were reported in 2016. OBJECTIVES AND METHODS We employed genome sequencing and epidemiological investigation to characterise the Chikungunya fever (CHIKF) burden in RS between 2017-2021. FINDINGS We detected an increasing CHIKF burden linked to travel associated introductions and communitary transmission of distinct lineages of the ECSA genotype during this period. MAIN CONCLUSIONS Until 2020, CHIKV introductions were most travel associated and transmission was limited. Then, in 2021, the largest outbreak occurred in the state associated with the introduction of a new ECSA lineage. CHIKV outbreaks are likely to occur in the near future due to abundant competent vectors and a susceptible population, exposing more than 11 million inhabitants to an increasing infection risk.
RESUMO
Recombination events have been described in the Coronaviridae family. Since the beginning of the SARS-CoV-2 pandemic, a variable degree of selection pressure has acted upon the virus, generating new strains with increased fitness in terms of viral transmission and antibody scape. Most of the SC2 variants of concern (VOC) detected so far carry a combination of key amino acid changes and indels. Recombination may also reshuffle existing genetic profiles of distinct strains, potentially giving origin to recombinant strains with altered phenotypes. However, co-infection and recombination events are challenging to detect and require in-depth curation of assembled genomes and sequencing reds. Here, we present the molecular characterization of a new SARS-CoV-2 recombinant between BA.1.1 and BA.2.23 Omicron lineages identified in Brazil. We characterized four mutations that had not been previously described in any of the recombinants already identified worldwide and described the likely breaking points. Moreover, through phylogenetic analysis, we showed that the newly named XAG lineage groups in a highly supported monophyletic clade confirmed its common evolutionary history from parental Omicron lineages and other recombinants already described. These observations were only possible thanks to the joint effort of bioinformatics tools auxiliary in genomic surveillance and the manual curation of experienced personnel, demonstrating the importance of genetic, and bioinformatic knowledge in genomics.
RESUMO
We evaluated epidemiologic and molecular characteristics of monkeypox virus (MPXV) infections sampled from 2 healthcare nurses. Five days after collecting samples from an infected patient, the nurses showed typical MPXV manifestations; quantitative PCR and whole-genome sequencing confirmed MPXV infection, most likely transmitted through contact with fomites.
Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Mpox/diagnóstico , Mpox/epidemiologia , Brasil/epidemiologia , Pessoal de SaúdeRESUMO
BACKGROUND: Non-tuberculous mycobacteria (NTMs) cause diseases known as mycobacteriosis and are an important cause of morbidity and mortality. The diagnosis of pulmonary disease caused by NTM is hampered by its clinical similarity with tuberculosis (TB) and by the lack of an accurate and rapid laboratory diagnosis. OBJECTIVES: Detect DNA from NTMs directly from lung samples using real-time polymerase chain reaction (qPCR) for amplification of 16S rRNA. Additionally, DNA sequencing (hsp65 and rpoB genes) was used to identify the species of MNTs. METHODS: A total of 68 sputum samples (54 with suspected NTMs and 14 with TB) from patients treated at a referral hospital were used. FINDINGS: Of these, 27/54 (50%) were qPCR positive for NTMs and 14/14 TB patients (controls) were qPCR negative with an almost perfect concordance (Kappa of 0.93) with the Mycobacterium spp. culture. Sequencing confirmed the presence of NTM in all positive samples. The most common species was Mycobacterium gordonae (33%), followed by Mycobacterium abscessus (26%), Mycobacterium fortuitum (22%), Mycobacterium avium (15%) and Mycobacterium peregrinum (4%). MAIN CONCLUSIONS: The qPCR technique for detecting NTMs targeting 16S rRNA has the potential to detect NTMs and rapidly differentiate from Mycobacterium tuberculosis. However, it is necessary to identify the species to help in the differential diagnosis between disease and contamination, and to guide the choice of the therapeutic scheme.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Tuberculose , Humanos , Pulmão , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium tuberculosis/genética , Micobactérias não Tuberculosas/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND Non-tuberculous mycobacteria (NTMs) cause diseases known as mycobacteriosis and are an important cause of morbidity and mortality. The diagnosis of pulmonary disease caused by NTM is hampered by its clinical similarity with tuberculosis (TB) and by the lack of an accurate and rapid laboratory diagnosis. OBJECTIVES Detect DNA from NTMs directly from lung samples using real-time polymerase chain reaction (qPCR) for amplification of 16S rRNA. Additionally, DNA sequencing (hsp65 and rpoB genes) was used to identify the species of MNTs. METHODS A total of 68 sputum samples (54 with suspected NTMs and 14 with TB) from patients treated at a referral hospital were used. FINDINGS Of these, 27/54 (50%) were qPCR positive for NTMs and 14/14 TB patients (controls) were qPCR negative with an almost perfect concordance (Kappa of 0.93) with the Mycobacterium spp. culture. Sequencing confirmed the presence of NTM in all positive samples. The most common species was Mycobacterium gordonae (33%), followed by Mycobacterium abscessus (26%), Mycobacterium fortuitum (22%), Mycobacterium avium (15%) and Mycobacterium peregrinum (4%). MAIN CONCLUSIONS The qPCR technique for detecting NTMs targeting 16S rRNA has the potential to detect NTMs and rapidly differentiate from Mycobacterium tuberculosis. However, it is necessary to identify the species to help in the differential diagnosis between disease and contamination, and to guide the choice of the therapeutic scheme.
RESUMO
Molecular-typing can help in unraveling epidemiological scenarios and improvement for disease control strategies. A literature review of Mycobacterium tuberculosis transmission in Brazil through genotyping on 56 studies published from 1996-2019 was performed. The clustering rate for mycobacterial interspersed repetitive units - variable tandem repeats (MIRU-VNTR) of 1,613 isolates were: 73%, 33% and 28% based on 12, 15 and 24-loci, respectively; while for RFLP-IS6110 were: 84% among prison population in Rio de Janeiro, 69% among multidrug-resistant isolates in Rio Grande do Sul, and 56.2% in general population in São Paulo. These findings could improve tuberculosis (TB) surveillance and set up a solid basis to build a database of Mycobacterium genomes.
Assuntos
Repetições Minissatélites/genética , Mycobacterium tuberculosis/genética , Polimorfismo de Fragmento de Restrição/genética , Técnicas de Tipagem Bacteriana , Brasil/epidemiologia , Genótipo , Humanos , Epidemiologia Molecular , Mycobacterium tuberculosis/isolamento & purificação , Sequenciamento Completo do GenomaRESUMO
Here we described phenotypical, molecular and epidemiological features of a highly rifampicin-resistant Mycobacterium tuberculosis strain emerging in Southern Brazil, that carries an uncommon insertion of 12 nucleotides at the codon 435 in the rpoB gene. Employing a whole-genome sequencing-based study on drug-resistant Mycobacterium tuberculosis strains, we identified this emergent strain in 16 (9.19%) from 174 rifampicin-resistant clinical strains, all of them belonging to LAM RD115 sublineage. Nine of these 16 strains were available to minimum inhibitory concentration determination and for all of them was found a high rifampicin-resistance level (≥to 32 mg/L). This high resistance level could be explained by structural changes into the RIF binding site of RNA polymerase caused by the insertions, and consequent low-affinity interaction with rifampicin complex confirmed through protein modeling and molecular docking simulations. Epidemiological investigation showed that most of the individuals (56.25%) infected by the studied strains were prison inmate individuals or that spent some time in prison. The phylogenomic approach revealed that strains carrying on insertion belonged to same genomic cluster, evidencing a communal transmission chain involving inmate individuals and community. We stress the importance of tuberculosis genomic surveillance and introduction of measures to interrupt Mycobacterium tuberculosis transmission chain in this region.
Assuntos
DNA Bacteriano/genética , Mutação , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Brasil/epidemiologia , Análise Mutacional de DNA , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Estudos Retrospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologiaRESUMO
Abstract Tuberculosis (TB) is one of the infectious diseases with high mortality in the world. DNA amplification techniques have been used to overcome barriers to the diagnosis of this disease. However, the success of these methodologies is highly dependent on the DNA obtained from the sample. This study was carried out to verify whether the DNA extracted by sonication (in house method) could yield suitable DNA for amplification by real-time PCR (qPCR). Sixty sputum samples were submitted to DNA extraction using sonication compared to a commercial method (Detect-TB kit, Labtest/MG-Brazil). All DNA samples were amplified by qPCR for IS6110 region (IS6110-qPCR/SYBR Green assay). Out of 60 samples, 40 were positive for TB; of these, all had positive results when extracted by sonication (100%) and 80% when extracted by the commercial method. The limit of detection (LOD) of Mycobacterium tuberculosis (H37Rv strain) by qPCR was 14CFU/mL when the DNA was extracted by sonication, compared to countless colonies when extracted by commercial kit. In conclusion, the sonication protocol (without purification step) proved to be a simple, fast, and suitable method for obtaining DNA for use in qPCR from sputum samples.
Assuntos
Humanos , Tuberculose Pulmonar , Mycobacterium tuberculosis , Sonicação , Escarro , Brasil , DNA , DNA Bacteriano/genética , Sensibilidade e Especificidade , Mycobacterium tuberculosis/genéticaRESUMO
Tuberculosis (TB) is one of the infectious diseases with high mortality in the world. DNA amplification techniques have been used to overcome barriers to the diagnosis of this disease. However, the success of these methodologies is highly dependent on the DNA obtained from the sample. This study was carried out to verify whether the DNA extracted by sonication (in house method) could yield suitable DNA for amplification by real-time PCR (qPCR). Sixty sputum samples were submitted to DNA extraction using sonication compared to a commercial method (Detect-TB kit, Labtest/MG-Brazil). All DNA samples were amplified by qPCR for IS6110 region (IS6110-qPCR/SYBR Green assay). Out of 60 samples, 40 were positive for TB; of these, all had positive results when extracted by sonication (100%) and 80% when extracted by the commercial method. The limit of detection (LOD) of Mycobacterium tuberculosis (H37Rv strain) by qPCR was 14â¯CFU/mL when the DNA was extracted by sonication, compared to countless colonies when extracted by commercial kit. In conclusion, the sonication protocol (without purification step) proved to be a simple, fast, and suitable method for obtaining DNA for use in qPCR from sputum samples.
Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Brasil , DNA , DNA Bacteriano/genética , Humanos , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade , Sonicação , EscarroRESUMO
BACKGROUND: Early diagnosis of tuberculosis (TB) and identification of strains of Mycobacterium tuberculosis resistant to anti-TB drugs are considered the main factors for disease control. OBJECTIVES: To standardise a real-time polymerase chain reaction (qPCR) assay technique and apply it to identify mutations involved in M. tuberculosis resistance to Isoniazid (INH) directly in Ziehl-Neelsen (ZN) stained slides. METHODS: Were analysed 55 independent DNA samples extracted from clinical isolates of M. tuberculosis by sequencing. For application in TB diagnosis resistance, 59 ZN-stained slides were used. The sensitivity, specificity and Kappa index, with a 95% confidence interval (CI95%), were determined. FINDINGS: The agreement between the tests was, for the katG target, the Kappa index of 0.89 (CI95%: 0.7-1.0). The sensitivity and specificity were 97.6% (CI95%: 87.7-99.9) and 91.7% (CI95%: 61.5-99.5), respectively. For inhA, the Kappa index was 0.92 (CI95%: 0.8-1.0), the sensitivity and specificity were 94.4% (CI95%: 72.7-99.8) and 97.3% (CI95%: 85.8-99.9), respectively. The use of ZN-stained slides for drug-resistant TB detection showed significant results when compared to other standard tests for drug resistance. MAIN CONCLUSIONS: qPCR genotyping proved to be an efficient method to detect genes that confer M. tuberculosis resistance to INH. Thus, qPCR genotyping may be an alternative instead of sequencing.
Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Marcadores Genéticos/genética , Isoniazida/farmacologia , Mutação/genética , Mycobacterium tuberculosis/genética , DNA Bacteriano/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e EspecificidadeRESUMO
Drug-resistant tuberculosis (DR-TB) is major problem in the fight against TB. Multidrug resistant (MDR) TB patients have a reduced treatment success rates and for, extensively drug-resistant (XDR) TB the cure rate does not exceed 25% in many countries. To evaluate the pre-XDR-TB and XDR-TB prevalence and transmission in Rio Grande do Sul State, in southern Brazil, we performed a retrospective WGS-based analysis of 87 MDR-TB cases, aiming to identify resistance-conferring mutations and its phylogenetic distinctiveness. Using a five SNP threshold for genomic clustering, 60 strains were genomically linked within 10 clusters, including 14 likely transmission events identified by retrospective conventional epidemiological investigation. Moreover, five likely transmission events involved 17 patients deprived of liberty in the same prison establishment. Mutations associated with isoniazid and rifampicin resistance were identified respectively in 97.70% and 98.85% of MDR M.tb strains, more frequently in katG and rpoB genes. In total, we identified eight (9.19%) pre-XDR and four (4.59%) XDR M.tb strains. Resistance to ofloxacin was observed in seven (8.04%) strains, all of them presenting resistance-conferring mutations. Phenotypic resistance from capreomycin and kanamycin was found in seven (8.04%) and four (4.59%) strains respectively, but no classic mutations associated with resistance to these drugs was identified. The results put in evidence a scenario involving multiple phylogenetically distinctive clades associated with pre-XDR and XDR-TB in the largest state of southern Brazil, while stressing the potential of using WGS to predict anti-TB drug resistance and need to halt MDR-TB transmission in the region.
Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto , Antituberculosos/farmacologia , Brasil/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Feminino , Variação Genética , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Repetições Minissatélites , Mutação , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Sequenciamento Completo do GenomaRESUMO
BACKGROUND Early diagnosis of tuberculosis (TB) and identification of strains of Mycobacterium tuberculosis resistant to anti-TB drugs are considered the main factors for disease control. OBJECTIVES To standardise a real-time polymerase chain reaction (qPCR) assay technique and apply it to identify mutations involved in M. tuberculosis resistance to Isoniazid (INH) directly in Ziehl-Neelsen (ZN) stained slides. METHODS Were analysed 55 independent DNA samples extracted from clinical isolates of M. tuberculosis by sequencing. For application in TB diagnosis resistance, 59 ZN-stained slides were used. The sensitivity, specificity and Kappa index, with a 95% confidence interval (CI95%), were determined. FINDINGS The agreement between the tests was, for the katG target, the Kappa index of 0.89 (CI95%: 0.7-1.0). The sensitivity and specificity were 97.6% (CI95%: 87.7-99.9) and 91.7% (CI95%: 61.5-99.5), respectively. For inhA, the Kappa index was 0.92 (CI95%: 0.8-1.0), the sensitivity and specificity were 94.4% (CI95%: 72.7-99.8) and 97.3% (CI95%: 85.8-99.9), respectively. The use of ZN-stained slides for drug-resistant TB detection showed significant results when compared to other standard tests for drug resistance. MAIN CONCLUSIONS qPCR genotyping proved to be an efficient method to detect genes that confer M. tuberculosis resistance to INH. Thus, qPCR genotyping may be an alternative instead of sequencing.
Assuntos
Humanos , Marcadores Genéticos/genética , Farmacorresistência Bacteriana/genética , Isoniazida/farmacologia , Mutação/genética , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , DNA Bacteriano/genética , Testes de Sensibilidade Microbiana , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real , Genótipo , Mycobacterium tuberculosis/efeitos dos fármacosRESUMO
BACKGROUND: Molecular tests can allow the rapid detection of tuberculosis (TB) and multidrug-resistant TB (MDR-TB). TB-SPRINT 59-Plex Beamedex® is a microbead-based assay developed for the simultaneous spoligotyping and detection of MDR-TB. The accuracy and cost evaluation of new assays and technologies are of great importance for their routine use in clinics and in research laboratories. The aim of this study was to evaluate the performance of TB-SPRINT at three laboratory research centers in Brazil and calculate its mean cost (MC) and activity-based costing (ABC). METHODS: TB-SPRINT data were compared with the phenotypic and genotypic profiles obtained using Bactec™ MGIT™ 960 system and Genotype® MTBDRplus, respectively. RESULTS: Compared with MGIT, the accuracies of TB-SPRINT for the detection of rifampicin and isoniazid resistance ranged from 81 to 92% and 91.3 to 93.9%, respectively. Compared with MTBDRplus, the accuracies of TB-SPRINT for rifampicin and isoniazid were 99 and 94.2%, respectively. Moreover, the MC and ABC of TB-SPRINT were USD 127.78 and USD 109.94, respectively. CONCLUSION: TB-SPRINT showed good results for isoniazid and rifampicin resistance detection, but still needs improvement to achieve In Vitro Diagnostics standards.
Assuntos
Farmacorresistência Bacteriana , Citometria de Fluxo/métodos , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Catalase/genética , Custos e Análise de Custo , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Citometria de Fluxo/economia , Genótipo , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Regiões Promotoras Genéticas , Kit de Reagentes para Diagnóstico , Rifampina , Sensibilidade e Especificidade , Tuberculose/economiaRESUMO
HPV types 16 and 18 were studied in paraffin-fixed cervical biopsy collected in southern Brazil. HPV 16, HPV 18 and co-infection HPV 16/18 were identified in 10/57 (17.5%), 4/57 (7%) and in 43/57 (75.4%) samples, respectively. Southern Brazil has one of the highest prevalence rates of HPV 16/18 reported.
Assuntos
Colo do Útero/patologia , Coinfecção/virologia , Papillomavirus Humano 16/isolamento & purificação , Papillomavirus Humano 18/isolamento & purificação , Infecções por Papillomavirus/virologia , Adolescente , Adulto , Biópsia , Brasil/epidemiologia , Colo do Útero/virologia , Coinfecção/epidemiologia , Coinfecção/patologia , Feminino , Papillomavirus Humano 16/classificação , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/classificação , Papillomavirus Humano 18/genética , Humanos , Pessoa de Meia-Idade , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/patologia , Prevalência , Adulto JovemRESUMO
In Brazil, visceral leishmaniasis (VL) is expanding and becoming urbanized, especially in non-endemic areas such as the State of Rio Grande do Sul. Considering that infected dogs are the main reservoir for zoonotic VL, this study evaluated the prevalence of canine visceral leishmaniasis (CVL) in the metropolitan area of Porto Alegre, a new area of expansion of VL in Brazil. Serum and plasma from 405 asymptomatic dogs from the municipalities of Canoas (n=107), São Leopoldo (n=216), and Novo Hamburgo (n=82) were tested for CVL using immunochromatographic (DPP®) and ELISA EIE® assays (2 assays officially adopted by the Brazilian government for the diagnosis of CVL) and real-time PCR to confirm the results. There was no agreement among serological and real-time PCR results, indicating that the Leishmania infection in asymptomatic animals with low parasite load, confirmed by negative parasitological tests (smears and parasite culture), need to be evaluated by molecular methods. The prevalence of LVC in the metropolitan region of Porto Alegre, confirmed by real-time PCR was 4% (5.6% in Canoas and 4.6% in São Leopoldo). The use of molecular method is essential for accurate diagnosis of CVL, especially in asymptomatic dogs in non-endemic areas.