Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Immunol Rev ; 323(1): 241-256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553621

RESUMO

The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.


Assuntos
Doenças Autoimunes , Autoimunidade , Células Dendríticas , Inflamação , Interferon Tipo I , Transdução de Sinais , Receptores Toll-Like , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Inflamação/imunologia , Receptores Toll-Like/metabolismo , Doenças Autoimunes/imunologia , Interferon Tipo I/metabolismo , Plaquetas/imunologia , Plaquetas/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Tolerância Imunológica , Imunomodulação , Quimiocinas/metabolismo
2.
Eur J Immunol ; 54(3): e2350666, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161237

RESUMO

Mycobacterium tuberculosis (Mtb) can cause a latent infection that sometimes progresses to clinically active tuberculosis (TB). Type I interferons (IFN-I) have been implicated in initiating the progression from latency to active TB, in part because IFN-I stimulated genes are the earliest genes to be upregulated in patients as they advance to active TB. Plasmacytoid dendritic cells (pDCs) are major producers of IFN-I during viral infections and in response to autoimmune-induced neutrophil extracellular traps. pDCs have also been suggested to be the major producers of IFN-I during Mtb infection of mice and nonhuman primates, but direct evidence has been lacking. Here, we found that Mtb did not stimulate isolated human pDCs to produce IFN-I, but human neutrophils infected with Mtb-activated co-cultured pDCs to do so. Mtb-infected neutrophils produced neutrophil extracellular traps, whose exposed DNA is a well-known mechanism to activate pDCs to secrete IFN-I. We conclude that pDCs contribute to the IFN-I response during Mtb infection by interacting with infected neutrophils which may then promote Mtb pathogenesis.


Assuntos
Interferon Tipo I , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Neutrófilos/metabolismo , Interferon Tipo I/metabolismo , Células Dendríticas/metabolismo
3.
J Exp Med ; 220(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37773045

RESUMO

Central B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides. The in vivo production of CXCL4 thereby impedes both TLR9 responses in B cells and the establishment of central B cell tolerance. We conclude that TLR9 plays an essential early tolerogenic function required for the establishment of central B cell tolerance and that correcting defective TLR9 function in B cells from SSc patients may represent a novel therapeutic strategy to restore B cell tolerance.


Assuntos
Fator Plaquetário 4 , Escleroderma Sistêmico , Receptor Toll-Like 9 , Animais , Humanos , Camundongos , Linfócitos B , Ligantes , Fator 88 de Diferenciação Mieloide/metabolismo , Fator Plaquetário 4/metabolismo , Escleroderma Sistêmico/metabolismo , Receptor 7 Toll-Like , Receptor Toll-Like 9/metabolismo
4.
Biol Sex Differ ; 14(1): 60, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723501

RESUMO

BACKGROUND: Human endosomal Toll-like receptors TLR7 and TLR8 recognize self and non-self RNA ligands, and are important mediators of innate immunity and autoimmune pathogenesis. TLR7 and TLR8 are, respectively, encoded by adjacent X-linked genes. We previously established that TLR7 evades X chromosome inactivation (XCI) in female immune cells. Whether TLR8 also evades XCI, however, has not yet been explored. METHOD: In the current study, we used RNA fluorescence in situ hybridization (RNA FISH) to directly visualize, on a single-cell basis, primary transcripts of TLR7 and TLR8 relative to X chromosome territories in CD14+ monocytes and CD4+ T lymphocytes from women, Klinefelter syndrome (KS) men, and euploid men. To assign X chromosome territories in cells lacking robust expression of a XIST compartment, we designed probes specific for X-linked genes that do not escape XCI and therefore robustly label the active X chromosome. We also assessed whether XCI escape of TLR8 was associated with sexual dimorphism in TLR8 protein expression by western blot and flow cytometry. RESULTS: Using RNA FISH, we show that TLR8, like TLR7, evades XCI in immune cells, and that cells harboring simultaneously TLR7 and TLR8 transcript foci are more frequent in women and KS men than in euploid men, resulting in a sevenfold difference in frequency. This transcriptional bias was again observable when comparing the single X of XY males with the active X of cells from females or KS males. Interestingly, TLR8 protein expression was significantly higher in female mononuclear blood cells, including all monocyte subsets, than in male cells. CONCLUSIONS: TLR8, mirroring TLR7, escapes XCI in human monocytes and CD4+ T cells. Co-dependent transcription from the active X chromosome and escape from XCI could both contribute to higher TLR8 protein abundance in female cells, which may have implications for the response to viruses and bacteria, and the risk of developing inflammatory and autoimmune diseases.


Human endosomal Toll-like receptors TLR7 and TLR8, encoded by two adjacent X-linked genes, recognize self and non-self RNA ligands, and are important mediators of innate immunity and autoimmune pathogenesis. We previously reported that TLR7 evades X chromosome inactivation (XCI) in female immune cells, correlating with enhanced functional properties in B cells harboring biallelic expression of this gene. Here, we conducted a comprehensive single-cell resolution analysis of the transcriptional regulation of both TLR7 and TLR8, in CD14+ monocytes and CD4+ T lymphocytes. We unequivocally demonstrated that TLR8, like TLR7, escapes XCI in immune cells from female and Klinefelter syndrome males. When we analyzed TLR7 and TLR8 transcripts together, cells from women and KS men exhibited higher frequencies of cells co-transcribing the two genes. Surprisingly, these differences were attributable not only to the ability of TLR7 and TLR8 to be expressed on the Xi, but also to the joint transcriptional behavior of the TLR7­TLR8 gene pair on the active X chromosome specifically. This contrasted with a striking pattern of mutually exclusive transcription on the single X of euploid men. Corroborating our RNA FISH results, we found higher TLR8 protein expression in female than in male leukocytes, including all monocyte subpopulations. In summary, our data suggest that sex-biased co-regulation of the Toll-like receptor locus and XCI escape of TLR8 contribute to the sexual dimorphism in TLR8 expression, which may have important consequences for the functional make-up of monocyte and T cell populations.


Assuntos
Monócitos , Inativação do Cromossomo X , Humanos , Feminino , Masculino , Receptor 8 Toll-Like/genética , Linfócitos T , Hibridização in Situ Fluorescente , Receptor 7 Toll-Like/genética , Linfócitos T CD4-Positivos
5.
J Leukoc Biol ; 114(6): 615-629, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37648661

RESUMO

Regulation of the profile and magnitude of toll-like receptor (TLR) responses is important for effective host defense against infections while minimizing inflammatory toxicity. The chemokine CXCL4 regulates the TLR8 response to amplify inflammatory gene and inflammasome activation while attenuating the interferon (IFN) response in primary monocytes. In this study, we describe an unexpected role for the kinase RIPK3 in suppressing the CXCL4 + TLR8-induced IFN response and providing signal 2 to activate the NLRP3 inflammasome and interleukin (IL)-1 production in primary human monocytes. RIPK3 also amplifies induction of inflammatory genes such as TNF, IL6, and IL1B while suppressing IL12B. Mechanistically, RIPK3 inhibits STAT1 activation and activates PI3K-Akt-dependent and XBP1- and NRF2-mediated stress responses to regulate downstream genes in a dichotomous manner. These findings identify new functions for RIPK3 in modulating TLR responses and provide potential mechanisms by which RIPK3 plays roles in inflammatory diseases and suggest targeting RIPK3 and XBP1- and NRF2-mediated stress responses as therapeutic strategies to suppress inflammation while preserving the IFN response for host defense.


Assuntos
Inflamassomos , Monócitos , Humanos , Monócitos/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 8 Toll-Like , Fator 2 Relacionado a NF-E2 , Fosfatidilinositol 3-Quinases , Receptores Toll-Like/metabolismo , Interleucina-1beta/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
6.
J Exp Med ; 219(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36053251

RESUMO

Plasmacytoid dendritic cells (pDCs) chronically produce type I interferon (IFN-I) in autoimmune diseases, including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). We report that the IRE1α-XBP1 branch of the unfolded protein response (UPR) inhibits IFN-α production by TLR7- or TLR9-activated pDCs. In SSc patients, UPR gene expression was reduced in pDCs, which inversely correlated with IFN-I-stimulated gene expression. CXCL4, a chemokine highly secreted in SSc patients, downregulated IRE1α-XBP1-controlled genes and promoted IFN-α production by pDCs. Mechanistically, IRE1α-XBP1 activation rewired glycolysis to serine biosynthesis by inducing phosphoglycerate dehydrogenase (PHGDH) expression. This process reduced pyruvate access to the tricarboxylic acid (TCA) cycle and blunted mitochondrial ATP generation, which are essential for pDC IFN-I responses. Notably, PHGDH expression was reduced in pDCs from patients with SSc and SLE, and pharmacological blockade of TCA cycle reactions inhibited IFN-I responses in pDCs from these patients. Hence, modulating the IRE1α-XBP1-PHGDH axis may represent a hitherto unexplored strategy for alleviating chronic pDC activation in autoimmune disorders.


Assuntos
Lúpus Eritematoso Sistêmico , Escleroderma Sistêmico , Autoimunidade , Células Dendríticas , Endorribonucleases , Humanos , Interferon-alfa , Proteínas Serina-Treonina Quinases/genética , Escleroderma Sistêmico/metabolismo , Receptor Toll-Like 9
7.
Sci Immunol ; 7(75): eadd4906, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083891

RESUMO

Lung-infiltrating macrophages create a marked inflammatory milieu in a subset of patients with COVID-19 by producing a cytokine storm, which correlates with increased lethality. However, these macrophages are largely not infected by SARS-CoV-2, so the mechanism underlying their activation in the lung is unclear. Type I interferons (IFN-I) contribute to protecting the host against SARS-CoV-2 but may also have some deleterious effect, and the source of IFN-I in the lungs of infected patients is not well defined. Plasmacytoid dendritic cells (pDCs), a key cell type involved in antiviral responses, can produce IFN-I in response to SARS-CoV-2. We observed the infiltration of pDCs in the lungs of SARS-CoV-2-infected patients, which correlated with strong IFN-I signaling in lung macrophages. In patients with severe COVID-19, lung macrophages expressed a robust inflammatory signature, which correlated with persistent IFN-I signaling at the single-cell level. Hence, we observed the uncoupling in the kinetics of the infiltration of pDCs in the lungs and the associated IFN-I signature, with the cytokine storm in macrophages. We observed that pDCs were the dominant IFN-α-producing cells in response to the virus in the blood, whereas macrophages produced IFN-α only when in physical contact with infected epithelial cells. We also showed that IFN-α produced by pDCs, after the sensing of SARS-CoV-2 by TLR7, mediated changes in macrophages at both transcriptional and epigenetic levels, which favored their hyperactivation by environmental stimuli. Together, these data indicate that the priming of macrophages can result from the response by pDCs to SARS-CoV-2, leading to macrophage activation in patients with severe COVID-19.


Assuntos
COVID-19 , Interferon Tipo I , Síndrome da Liberação de Citocina , Células Dendríticas/fisiologia , Humanos , Interferon-alfa , Macrófagos , SARS-CoV-2
8.
Nat Commun ; 13(1): 3426, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701499

RESUMO

Regulation of endosomal Toll-like receptor (TLR) responses by the chemokine CXCL4 is implicated in inflammatory and fibrotic diseases, with CXCL4 proposed to potentiate TLR responses by binding to nucleic acid TLR ligands and facilitating their endosomal delivery. Here we report that in human monocytes/macrophages, CXCL4 initiates signaling cascades and downstream epigenomic reprogramming that change the profile of the TLR8 response by selectively amplifying inflammatory gene transcription and interleukin (IL)-1ß production, while partially attenuating the interferon response. Mechanistically, costimulation by CXCL4 and TLR8 synergistically activates TBK1 and IKKε, repurposes these kinases towards an inflammatory response via coupling with IRF5, and activates the NLRP3 inflammasome. CXCL4 signaling, in a cooperative and synergistic manner with TLR8, induces chromatin remodeling and activates de novo enhancers associated with inflammatory genes. Our findings thus identify new regulatory mechanisms of TLR responses relevant for cytokine storm, and suggest targeting the TBK1-IKKε-IRF5 axis may be beneficial in inflammatory diseases.


Assuntos
Quinase I-kappa B , Fatores Reguladores de Interferon , Monócitos , Fator Plaquetário 4 , Proteínas Serina-Treonina Quinases , Receptor 8 Toll-Like , Epigênese Genética , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/imunologia , Receptor 8 Toll-Like/metabolismo
9.
Cancer Discov ; 12(8): 1904-1921, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35552618

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer. Although LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type I interferon (IFN) responses in ovarian cancer. Ablation of the LPA-generating enzyme autotaxin (ATX) in ovarian cancer cells reprogrammed the tumor immune microenvironment, extended host survival, and improved the effects of therapies that elicit protective responses driven by type I IFN. Mechanistically, LPA sensing by dendritic cells triggered PGE2 biosynthesis that suppressed type I IFN signaling via autocrine EP4 engagement. Moreover, we identified an LPA-controlled, immune-derived gene signature associated with poor responses to combined PARP inhibition and PD-1 blockade in patients with ovarian cancer. Controlling LPA production or sensing in tumors may therefore be useful to improve cancer immunotherapies that rely on robust induction of type I IFN. SIGNIFICANCE: This study uncovers that ATX-LPA is a central immunosuppressive pathway in the ovarian tumor microenvironment. Ablating this axis sensitizes ovarian cancer hosts to various immunotherapies by unleashing protective type I IFN responses. Understanding the immunoregulatory programs induced by LPA could lead to new biomarkers predicting resistance to immunotherapy in patients with cancer. See related commentary by Conejo-Garcia and Curiel, p. 1841. This article is highlighted in the In This Issue feature, p. 1825.


Assuntos
Interferon Tipo I , Lisofosfolipídeos , Neoplasias Ovarianas , Feminino , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Microambiente Tumoral
10.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35640018

RESUMO

Chemokines control the migratory patterns and positioning of immune cells to organize immune responses to pathogens. However, many chemokines have been associated with systemic autoimmune diseases that have chronic IFN signatures. We report that a series of chemokines, including CXCL4, CXCL10, CXCL12, and CCL5, can superinduce type I IFN (IFN-I) by TLR9-activated plasmacytoid DCs (pDCs), independently of their respective known chemokine receptors. Mechanistically, we show that chemokines such as CXCL4 mediate transcriptional and epigenetic changes in pDCs, mostly targeted to the IFN-I pathways. We describe that chemokines physically interact with DNA to form nanoparticles that promote clathrin-mediated cellular uptake and delivery of DNA in the early endosomes of pDCs. Using two separate mouse models of skin inflammation, we observed the presence of CXCL4 associated with DNA in vivo. These data reveal a noncanonical role for chemokines to serve as nucleic acid delivery vectors to modulate TLR signaling, with implications for the chronic presence of IFN-I by pDCs in autoimmune diseases.


Assuntos
Quimiocinas , Células Dendríticas , Nanopartículas , Receptores Toll-Like , Animais , Quimiocinas/metabolismo , DNA/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...